An Un-PAC-learnable Problem

In a previous post we introduced a learning model called Probably Approximately Correct (PAC). We saw an example of a concept class that was easy to learn: intervals on the real line (and more generally, if you did the exercise, axis-aligned rectangles in a fixed dimension).

But PAC learning wouldn’t be an interesting model if every concept class was PAC-learnable. So as a technical aside in our study of learning theory, this post presents the standard example of a problem that isn’t learnable in the PAC model. Afterward we’ll see that allowing the learner to be more expressive can be helpful, and by doing so we can make this unlearnable problem learnable.

3-Term DNF Formulas

Readers of this blog will probably have encountered a boolean formula before. A boolean formula is just a syntactic way to describe some condition (like, exactly one of these two things has to be true) using variables and logical connectives. The best way to recall it is by example: the following boolean formula encodes the “exclusive or” of two variables.

\displaystyle (x \wedge \overline{y}) \vee (\overline{x} \wedge y)

The wedge \wedge denotes a logical AND and the vee \vee denotes a logical OR. A bar above a variable represents a negation of a variable. (Please don’t ask me why the official technical way to write AND and OR is in all caps, I feel like I’m yelling math at people.)

In general a boolean formula has literals, which we can always denote by an x_i or the negation \overline{x_i}, and connectives \wedge and \vee, and parentheses to denote order. It’s a simple fact that any logical formula can be encoded using just these tools, but rather than try to learn general boolean formulas we look at formulas in a special form.

Definition: A formula is in three-term disjunctive normal form (DNF) if it has the form C_1 \vee C_2 \vee C_3 where each $C_i$ is an AND of some number of literals.

Readers who enjoyed our P vs NP primer will recall a related form of formulas: the 3-CNF form, where the “three” meant that each clause had exactly three literals and the “C” means the clauses are connected with ANDs. This is a sort of dual normal form: there are only three clauses, each clause can have any number of variables, and the roles of AND and OR are switched. In fact, if you just distribute the \vee‘s in a 3-term DNF formula using DeMorgan’s rules, you’ll get an equivalent 3-CNF formula. The restriction of our hypotheses to 3-term DNFs will be the crux of the difficulty: it’s not that we can’t learn DNF formulas, we just can’t learn them if we are forced to express our hypothesis as a 3-term DNF as well.

The way we’ll prove that 3-term DNF formulas “can’t be learned” in the PAC model is by an NP-hardness reduction. That is, we’ll show that if we could learn 3-term DNFs in the PAC model, then we’d be able to efficiently solve NP-hard problems with high probability. The official conjecture we’d be violating is that RP is different from NP. RP is the class of problems that you can solve in polynomial time with randomness if you can never have false positives, and the probability of a false negative is at most 1/2. Our “RP” algorithm will be a PAC-learning algorithm.

The NP-complete problem we’ll reduce from is graph 3-coloring. So if you give me a graph, I’ll produce an instance of the 3-term DNF PAC-learning problem in such a way that finding a hypothesis with low error corresponds to a valid 3-coloring of the graph. Since PAC-learning ensures that you are highly likely to find a low-error hypothesis, the existence of a PAC-learning algorithm will constitute an RP algorithm to solve this NP-complete problem.

In more detail, an “instance” of the 3-term DNF problem comes in the form of a distribution over some set of labeled examples. In this case the “set” is the set of all possible truth assignments to the variables, where we fix the number of variables to suit our needs, along with a choice of a target 3-term DNF to be learned. Then you’d have to define the distribution over these examples.

But we’ll actually do something a bit slicker. We’ll take our graph G, we’ll construct a set S_G of labeled truth assignments, and we’ll define the distribution D to be the uniform distribution over those truth assignments used in S_G. Then, if there happens to be a 3-term DNF that coincidentally labels the truth assignments in S_G exactly how we labeled them, and we set the allowed error \varepsilon to be small enough, a PAC-learning algorithm will find a consistent hypothesis (and it will correspond to a valid 3-coloring of G). Otherwise, no algorithm would be able to come up with a low-error hypothesis, so if our purported learning algorithm outputs a bad hypothesis we’d be certain (with high probability) that it was not bad luck but that the examples are not consistent with any 3-term DNF (and hence there is no valid 3-coloring of G).

This general outline has nothing to do with graphs, and so you may have guessed that the technique is commonly used to prove learning problems are hard: come up with a set of labeled examples, and a purported PAC-learning algorithm would have to come up with a hypothesis consistent with all the examples, which translates back to a solution to your NP-hard problem.

The Reduction

Now we can describe the reduction from graphs to labeled examples. The intuition is simple: each term in the 3-term DNF should correspond to a color class, and so any two adjacent vertices should correspond to an example that cannot be true. The clauses will correspond to…

For a graph G with n nodes v_1, \dots, v_n and a set of m undirected edges E, we construct a set of examples with positive labels S^+ and one with negative examples S^-. The examples are truth assignments to n variables, which we label x_1, \dots, x_n, and we identify a truth assignment to the \left \{ 0,1 \right \}-valued vector (x_1, x_2, \dots, x_n) in the usual way (true is 1, false is 0).

The positive examples S^+ are simple: for each v_i add a truth assignment x_i = T, x_j = F for j \neq i. I.e., the binary vector is (1, \dots, 1,0,1, \dots, 1), and the zero is in the i-th position.

The negative examples S^- come from the edges. For each edge (v_i, v_j) \in E, we add the example with a zero in the i-th and j-th components and ones everywhere else. Here is an example graph and the corresponding positive and negative examples:

PAC-reduction

Claim: G is 3-colorable if and only if the corresponding examples are consistent with some 3-term DNF formula \varphi.

Again, consistent just means that \varphi is satisfied by every truth assignment in S^+ and unsatisfied by every example in S^-. Since we chose our distribution to be uniform over S^+ \cup S^-, we don’t care what \varphi does elsewhere.

Indeed, if G is three-colorable we can fix some valid 3-coloring with colors red, blue, and yellow. We can construct a 3-term DNF that does what we need. Let T_R be the AND of all the literals x_i for which vertex v_i is not red. For each such i, the corresponding example in S^+ will satisfy T_R, because we put a zero in the i-th position and ones everywhere else. Similarly, no example in S^- will make T_R true because to do so both vertices in the corresponding edge would have to be red.

To drive this last point home say there are three vertices and your edge is (v_1,v_2). Then the corresponding negative example is (0,0,1). Unless both v_1 and v_2 are colored red, one of x_1, x_2 will have to be ANDed as part of T_R. But the example has a zero for both x_1 and x_2, so T_R would not be satisfied.

Doing the same thing for blue and yellow, and OR them together to get T_R \vee T_B \vee T_Y. Since the case is symmetrically the same for the other colors, we a consistent 3-term DNF.

On the other hand, say there is a consistent 3-term DNF \varphi. We need to construct a three coloring of G. It goes in largely the same way: label the clauses \varphi = T_R \vee T_B \vee T_Y for Red, Blue, and Yellow, and then color a vertex v_i the color of the clause that is satisfied by the corresponding example in S^+. There must be some clause that does this because \varphi is consistent with S^+, and if there are multiple you can pick a valid color arbitrarily. Now we argue why no edge can be monochromatic. Suppose there were such an edge (v_i, v_j), and both v_i and v_j are colored, say, blue. Look at the clause T_B: since v_i and v_j are both blue, the positive examples corresponding to those vertices  (with a 0 in the single index and 1′s everywhere else) both make T_B true. Since those two positive examples differ in both their i-th and j-th positions, T_B can’t have any of the literals x_i, \overline{x_i}, x_j, \overline{x_j}. But then the negative example for the edge would satisfy T_B because it has 1′s everywhere except i,j! This means that the formula doesn’t consistently classify the negative examples, a contradiction. This proves the Claim.

Now we just need to show a few more details to finish the proof. In particular, we need to observe that the number of examples we generate is polynomial in the size of the graph G; that the learning algorithm would still run in polynomial time in the size of the input graph (indeed, this depends on our choice of the learning parameters); and that we only need to pick \delta < 1/2 and \varepsilon \leq 1/(2|S^+ \cup S^-|) in order to enforce that an efficient PAC-learner would generate a hypothesis consistent with all the examples. Indeed, if a hypothesis errs on even one example, it will have error at least 1 / |S^+ \cup S^-|, which is too big.

Everything’s not Lost

This might seem a bit depressing for PAC-learning, that we can’t even hope to learn 3-term DNF formulas. But we will give a sketch of why this is not a problem with PAC but a problem with DNFs.

In particular, the difficulty comes in forcing a PAC-learning algorithm to express its hypothesis as a 3-term DNF, as opposed to what we might argue is a more natural representation. As we observed, distributing the ORs in a 3-term DNF produces a 3-CNF formula (an AND of clauses where each clause is an OR of exactly three literals). Indeed, one can PAC-learn 3-CNF formulas efficiently, and it suffices to show that one can learn formulas which are just ANDs of literals. Then you can blow up the number of variables only polynomially larger to get 3-CNFs. ANDs of literals are just called “conjunctions,” so the problem is to PAC-learn conjunctions. The idea that works is the same one as in our first post on PAC where we tried to learn intervals: just pick the “smallest” hypothesis that is consistent with all the examples you’ve seen so far. We leave a formal proof as an (involved) exercise to the reader.

The important thing to note is that a concept class C (the thing we’re trying to learn) might be hard to learn if you’re constrained to work within C. If you’re allowed more expressive hypotheses (in this case, arbitrary boolean formulas), then learning C suddenly becomes tractable. This compels us to add an additional caveat to the PAC definition from our first post.

Definition: A concept class \mathsf{C} over a set X is efficiently PAC-learnable using the hypothesis class \mathsf{H} if there exists an algorithm A(\varepsilon, \delta) with access to a query function for \mathsf{C} and runtime O(\text{poly}(1/\varepsilon, 1/\delta)), such that for all c \in \mathsf{C}, all distributions D over X, and all 0 < \delta , \varepsilon < 1/2, the probability that A produces a hypothesis h \in \mathsf{H} with error at most \varepsilon is at least 1-\delta.

And with that we’ll end this extended side note. The next post in this series will introduce and analyze a fascinating notion of dimension for concept classes, the Vapnik-Chervonenkis dimension.

Until then!

About these ads

Stable Marriages and Designing Markets

Here is a fun puzzle. Suppose we have a group of 10 men and 10 women, and each of the men has sorted the women in order of their preference for marriage (that is, a man prefers to marry a woman earlier in his list over a woman later in the list). Likewise, each of the women has sorted the men in order of marriageability. We might ask if there is any way that we, the omniscient cupids of love, can decide who should marry to make everyone happy.

Of course, the word happy is entirely imprecise. The mathematician balks at the prospect of leaving such terms undefined! In this case, it’s quite obvious that not everyone will get their first pick. Indeed, if even two women prefer the same man someone will have to settle for less than their top choice. So if we define happiness in this naive way, the problem is obviously not solvable in general.

Now what if instead of aiming for each individual’s maximum happiness we instead shoot for mutual contentedness? That is, what if “happiness” here means that nobody will ever have an incentive to cheat on their spouse? It turns out that for a mathematical version of this condition, we can always find a suitable set of marriages! These mathematical formalisms include some assumptions, such as that preferences never change and that no new individuals are added to the population. But it is nevertheless an impressive theorem that we can achieve stability no matter what everyone’s preferences are. In this post we’ll give the classical algorithm which constructs so-called “stable marriages,” and we’ll prove its correctness. Then we’ll see a slight generalization of the algorithm, in which the marriages are “polygamous,” and we’ll apply it to the problem of assigning students to internships.

As usual, all of the code used in this post is available for download at this blog’s Github page.

Historical Notes

The original algorithm for computing stable marriages was discovered by Lloyd Shapley and David Gale in the early 1960′s. Shapely and Alvin Roth went on to dedicate much of their career to designing markets and applying the stable marriage problem and its generalizations to such problems. In 2012 they jointly received the Nobel prize in economics for their work on this problem. If you want to know more about what “market design” means and why it’s needed (and you have an hour to spare), consider watching the talk below by Alvin Roth at the Simons Institute’s 2013 Symposium on the Visions of the Theory of Computing. Roth spends most of his time discussing the state of one particular economy, medical students and residence positions at hospitals, which he was asked to redesign. It’s quite a fascinating tale, although some of the deeper remarks assume knowledge of the algorithm we cover in this post.

Alvin Roth went on to apply the ideas presented in the video to economic systems in Boston and New York City public schools, kidney exchanges, and others. They all had the same sort of structure: both parties have preferences and stability makes sense. So he actually imposed the protocol we’re about to describe in order to guarantee that the process terminates to a stable arrangement (and automating it saves everyone involved a lot of time, stress, and money! Watch the video above for more on that).

The Monogamous Stable Marriage Algorithm

Let’s formally set up the problem. Let X = \left \{ 1, 2, \dots, n \right \} be a set of n suitors and Y = \left \{ 1,2,\dots ,n \right \} be a set of n “suited.” Let \textup{pref}_{X \to Y}: X \to S_n be a list of preferences for the suitors. In words, \textup{pref}_{X \to Y} accepts as input a suitor, and produces as output an ordering on the suited members of Y. We denote the output set as S_n, which the group theory folks will recognize as the permutation group on 1, \dots, n. Likewise, there is a function \textup{pref}_{Y \to X}: Y \to S_n describing the preferences of each of the suited.

An example will help clarify these stuffy definitions. If X = \left \{ 1, 2, 3 \right \} and Y = \left \{ 1, 2, 3 \right \}, then to say that

\textup{pref}_{X \to Y}(2) = (3, 1, 2)

is to say that the second suitor prefers the third member of Y the most, and then the first member of Y, and then the second. The programmer might imagine that the datum of the problem consists of two dictionaries (one for X and one for Y) whose keys are integers and whose values are lists of integers which contain 1 through n in some order.

A solution to the problem, then, is a way to match (or marry) suitors with suited. Specifically, a matching is a bijection m: X \to Y, so that x is matched with m(x). The reason we use a bijection is because the marriages are monogamous: only one suitor can be matched with one suited and vice versa. Later we’ll see this condition dropped so we can apply it to a more realistic problem of institutions (suited) which can accommodate many applicants (suitors). Because suitor and suited are awkward to say, we’ll use the familiar, antiquated, and politically incorrect terms “men and women.”

Now if we’re given a monogamous matching m, a pair x \in X, y \in Y is called unstable for m if both x,y prefer each other over their partners assigned by m. That is, (x,y) is unstable for m if y appears before m(y) in the preference list for x, \textup{pref}_{X \to Y}(x), and likewise x appears before m^{-1}(y) in \textup{pref}_{Y \to X}(y).

Another example to clarify: again let X = Y = \left \{ 1,2,3 \right \} and suppose for simplicity that our matching m pairs m(i) = i. If man 2 has the preference list (3,2,1) and woman 3 has the preference list (2,1,3), then 2 and 3 together form an unstable pair for m, because they would rather be with each other over their current partners. That is, they have a mutual incentive to cheat on their spouses. We say that the matching is unstable or admits an unstable pair if there are any unstable pairs for it, and we call the entire matching stable if it doesn’t admit any unstable pairs.

Unlike real life, mathematically unstable marriages need not have constant arguments.

Unlike real life, mathematically unstable marriages need not feature constant arguments.

So the question at hand is: is there an algorithm which, given access to to the two sets of preferences, can efficiently produce a stable matching? We can also wonder whether a stable matching is guaranteed to exist, and the answer is yes. In fact, we’ll prove this and produce an efficient algorithm in one fell swoop.

The central concept of the algorithm is called deferred acceptance. The gist is like this. The algorithm operates in rounds. During each round, each man will “propose” to a woman, and each woman will pick the best proposal available. But the women will not commit to their pick. They instead reject all other suitors, who go on to propose to their second choices in the next round. At that stage each woman (who now may have a more preferred suitor than in the first round) may replace her old pick with a new one. The process continues in this manner until each man is paired with a woman. In this way, each of the women defers accepting any proposal until the end of the round, progressively increasing the quality of her choice. Likewise, the men progressively propose less preferred matches as the rounds progress.

It’s easy to argue such a process must eventually converge. Indeed, the contrary means there’s some sort of cycle in the order of proposals, but each man proposes to only strictly less preferred women than any previous round, and the women can only strictly increase the quality of their held pick. Mathematically, we’re using an important tool called monotonicity. That some quantity can only increase or decrease as time goes on, and since the quantity is bounded, we must eventually reach a local maximum. From there, we can prove that any local maximum satisfies the property we want (here, that the matching is stable), and we win. Indeed, supposing to the contrary that we have a pair (x,y) which is unstable for the matching m produced at the end of this process, then it must have been the case that x proposed to y in some earlier round. But y has as her final match some other suitor x' = m^{-1}(y) whom she prefers less than x. Though she may have never picked x at any point in the algorithm, she can only end up with the worse choice x' if at some point y chose a suitor that was less preferred than the suitor she already had. Since her choices are monotonic this cannot happen, so no unstable pairs can exist.

Rather than mathematically implement the algorithm in pseudocode, let’s produce the entire algorithm in Python to make the ideas completely concrete.

Python Implementation

We start off with some simple data definitions for the two parties which, in the renewed interest of generality, refer to as Suitor and Suited.

class Suitor(object):
   def __init__(self, id, prefList):
      self.prefList = prefList
      self.rejections = 0 # num rejections is also the index of the next option
      self.id = id

   def preference(self):
      return self.prefList[self.rejections]

   def __repr__(self):
      return repr(self.id)

A Suitor is simple enough: he has an id representing his “index” in the set of Suitors, and a preference list prefList which in its i-th position contains the Suitor’s i-th most preferred Suited. This is identical to our mathematical representation from earlier, where a list like (2,3,1) means that the Suitor prefers the second Suited most and the first Suited least. Knowing the algorithm ahead of time, we add an additional piece of data: the number of rejections the Suitor has seen so far. This will double as the index of the Suited that the Suitor is currently proposing to. Indeed, the preference function provides a thin layer of indirection allowing us to ignore the underlying representation, so long as one updates the number of rejections appropriately.

Now for the Suited.

class Suited(object):
   def __init__(self, id, prefList):
      self.prefList = prefList
      self.held = None
      self.currentSuitors = set()
      self.id = id

   def __repr__(self):
      return repr(self.id)

A Suited likewise has a list of preferences and an id, but in addition she has a held attribute for the currently held Suitor, and a list currentSuitors of Suitors that are currently proposing to her. Hence we can define a reject method which accepts no inputs, and returns a list of rejected suitors, while updating the woman’s state to hold onto her most preferred suitor.

   def reject(self):
      if len(self.currentSuitors) == 0:
         return set()

      if self.held is not None:
         self.currentSuitors.add(self.held)

      self.held = min(self.currentSuitors, key=lambda suitor: self.prefList.index(suitor.id))
      rejected = self.currentSuitors - set([self.held])
      self.currentSuitors = set()

      return rejected

The call to min does all the work: finding the Suitor that appears first in her preference list. The rest is bookkeeping. Now the algorithm for finding a stable marriage, following the deferred acceptance algorithm, is simple.

# monogamousStableMarriage: [Suitor], [Suited] -> {Suitor -> Suited}
# construct a stable (monogamous) marriage between suitors and suiteds
def monogamousStableMarriage(suitors, suiteds):
   unassigned = set(suitors)

   while len(unassigned) > 0:
      for suitor in unassigned:
         suiteds[suitor.preference()].currentSuitors.add(suitor)
      unassigned = set()

      for suited in suiteds:
         unassigned |= suited.reject()

      for suitor in unassigned:
         suitor.rejections += 1

   return dict([(suited.held, suited) for suited in suiteds])

All the Suitors are unassigned to begin with. Each iteration of the loop corresponds to a round of the algorithm: the Suitors are added to the currentSuitors list of their next most preferred Suited. Then the Suiteds “simultaneously” reject some Suitors, whose rejection counts are upped by one and returned to the pool of unassigned Suitors. Once every Suited has held onto a Suitor we’re done.

Given a matching, we can define a function that verifies by brute force that the marriage is stable.

# verifyStable: [Suitor], [Suited], {Suitor -> Suited} -> bool
# check that the assignment of suitors to suited is a stable marriage
def verifyStable(suitors, suiteds, marriage):
   import itertools
   suitedToSuitor = dict((v,k) for (k,v) in marriage.items())
   precedes = lambda L, item1, item2: L.index(item1) < L.index(item2)

   def suitorPrefers(suitor, suited):
      return precedes(suitor.prefList, suited.id, marriage[suitor].id)

   def suitedPrefers(suited, suitor):
      return precedes(suited.prefList, suitor.id, suitedToSuitor[suited].id)

   for (suitor, suited) in itertools.product(suitors, suiteds):
      if suited != marriage[suitor] and suitorPrefers(suitor, suited) and suitedPrefers(suited, suitor):
         return False, (suitor.id, suited.id)

   return

Indeed, we can test the algorithm on an instance of the problem.

>>> suitors = [Suitor(0, [3,5,4,2,1,0]), Suitor(1, [2,3,1,0,4,5]),
...            Suitor(2, [5,2,1,0,3,4]), Suitor(3, [0,1,2,3,4,5]),
...            Suitor(4, [4,5,1,2,0,3]), Suitor(5, [0,1,2,3,4,5])]
>>> suiteds = [Suited(0, [3,5,4,2,1,0]), Suited(1, [2,3,1,0,4,5]),
...            Suited(2, [5,2,1,0,3,4]), Suited(3, [0,1,2,3,4,5]),
...            Suited(4, [4,5,1,2,0,3]), Suited(5, [0,1,2,3,4,5])]
>>> marriage = monogamousStableMarriage(suitors, suiteds)
{3: 0, 4: 4, 5: 1, 1: 2, 2: 5, 0: 3}
>>> verifyStable(suitors, suiteds, marriage)
True

We encourage the reader to check this by hand (this one only took two rounds). Even better, answer the question of whether the algorithm could ever require n steps to converge for 2n individuals, where you get to pick the preference list to try to make this scenario happen.

Stable Marriages with Capacity

We can extend this algorithm to work for “polygamous” marriages in which one Suited can accept multiple Suitors. In fact, the two problems are entirely the same! Just imagine duplicating a Suited with large capacity into many Suiteds with capacity of 1. This particular reduction is not very efficient, but it allows us to see that the same proof of convergence and correctness applies. We can then modify our classes and algorithm to account for it, so that (for example) instead of a Suited “holding” a single Suitor, she holds a set of Suitors. We encourage the reader to try extending our code above to the polygamous case as an exercise, and we’ve provided the solution in the code repository for this post on this blog’s Github page.

Ways to Make it Harder

When you study algorithmic graph problems as much as I do, you start to get disheartened. It seems like every problem is NP-hard or worse. So when we get a situation like this, a nice, efficient algorithm with very real consequences and interpretations, you start to get very excited. In between our heaves of excitement, we imagine all the other versions of this problem that we could solve and Nobel prizes we could win. Unfortunately the landscape is bleaker than that, and most extensions of stable marriage problems are NP-complete.

For example, what if we allow ties? That is, one man can be equally happy with two women. This is NP-complete. However, it turns out his extension can be formulated as an integer programming problem, and standard optimization techniques can be used to approximate a solution.

What if, thinking about the problem in terms of medical students and residencies, we allow people to pick their preferences as couples? Some med students are married, after all, and prefer to be close to their spouse even if it means they have a less preferred residency. NP-hard again. See page 53 (pdf page 71) of these notes for a more detailed investigation. The problem is essentially that there is not always a stable matching, and so even determining whether there is one is NP-complete.

So there are a lot of ways to enrich the problem, and there’s an interesting line between tractable and hard in the worst case. As a (relatively difficult) exercise, try to solve the “roommates” version of the problem, where there is no male/female distinction (anyone can be matched with anyone). It turns out to have a tractable solution, and the algorithm is similar to the one outlined in this post.

Until next time!

PS. I originally wrote this post about a year ago when I was contacted by someone in industry who agreed to provide some (anonymized) data listing the preferences of companies and interns applying to work at those companies. Not having heard from them for almost a year, I figure it’s a waste to let this finished post collect dust at the risk of not having an interesting data set. But if you, dear reader, have any data you’d like to provide that fits into the framework of stable marriages, I’d love to feature your company/service on my blog (and solve the matching problem) in exchange for the data. The only caveat is that the data would have to be public, so you would have to anonymize it.

Where Math ∩ Programming is Headed

This week is Spring break at UI Chicago. While I’ll be spending most of it working, it does give me some downtime to reflect. We’ve come pretty far, dear reader, in these almost three years. I learned, you learned. We all laughed. My blog has become my infinite source of entertainment and an invaluable tool for synthesizing my knowledge.

But the more I write the more ideas I have for articles, and this has been accelerating. I’m currently sitting on 55 unfinished drafts ranging from just a title and an idea to an almost-completed post. A lot of these ideas have long chains of dependencies (I can’t help myself but write on all the background math I can stomach before I do the applications). So one day I decided to draw up a little dependency graph to map out my coarse future plans. Here it is:

A map of most of my current plans for blog posts and series, and their relationships to one another. Click to enlarge.

A map of most of my current plans for blog posts and series, and their relationships to one another. Click to enlarge.

Now all you elliptic curve fanatics can rest assured I’ll continue working that series to completion before starting on any of these big projects. This map basically gives a rough picture of things I’ve read about, studied, and been interested in over the past two years that haven’t already made it onto this blog. Some of the nodes represent passed milestones in my intellectual career, while others represent topics yet to be fully understood. Note very few specific applications are listed here (e.g., what might I use SVM to classify?), but I do have ideas for a lot of them. And note that these are very long term plans, some of which are likely never to come to fruition.

So nows your chance to speak up. What do you want to read about? What do you think is missing?

Martingales and the Optional Stopping Theorem

This is a guest post by my colleague Adam Lelkes.

The goal of this primer is to introduce an important and beautiful tool from probability theory, a model of fair betting games called martingales. In this post I will assume that the reader is familiar with the basics of probability theory. For those that need to refresh their knowledge, Jeremy’s excellent primers (1, 2) are a good place to start.

The Geometric Distribution and the ABRACADABRA Problem

Before we start playing with martingales, let’s start with an easy exercise. Consider the following experiment: we throw an ordinary die repeatedly until the first time a six appears. How many throws will this take in expectation? The reader might recognize immediately that this exercise can be easily solved using the basic properties of the geometric distribution, which models this experiment exactly. We have independent trials, every trial succeeding with some fixed probability p. If X denotes the number of trials needed to get the first success, then clearly \Pr(X = k) = (1-p)^{k-1} p (since first we need k-1 failures which occur independently with probability 1-p, then we need one success which happens with probability p). Thus the expected value of X is

\displaystyle E(X) = \sum_{k=1}^\infty k P(X = k) = \sum_{k=1}^\infty k (1-p)^{k-1} p = \frac1p

by basic calculus. In particular, if success is defined as getting a six, then p=1/6 thus the expected time is 1/p=6.

Now let us move on to a somewhat similar, but more interesting and difficult problem, the ABRACADABRA problem. Here we need two things for our experiment, a monkey and a typewriter. The monkey is asked to start bashing random keys on a typewriter. For simplicity’s sake, we assume that the typewriter has exactly 26 keys corresponding to the 26 letters of the English alphabet and the monkey hits each key with equal probability. There is a famous theorem in probability, the infinite monkey theorem, that states that given infinite time, our monkey will almost surely type the complete works of William Shakespeare. Unfortunately, according to astronomists the sun will begin to die in a few billion years, and the expected time we need to wait until a monkey types the complete works of William Shakespeare is orders of magnitude longer, so it is not feasible to use monkeys to produce works of literature.

So let’s scale down our goals, and let’s just wait until our monkey types the word ABRACADABRA. What is the expected time we need to wait until this happens? The reader’s first idea might be to use the geometric distribution again. ABRACADABRA is eleven letters long, the probability of getting one letter right is \frac{1}{26}, thus the probability of a random eleven-letter word being ABRACADABRA is exactly \left(\frac{1}{26}\right)^{11}. So if typing 11 letters is one trial, the expected number of trials is

\displaystyle \frac1{\left(\frac{1}{26}\right)^{11}}=26^{11}

which means 11\cdot 26^{11} keystrokes, right?

Well, not exactly. The problem is that we broke up our random string into eleven-letter blocks and waited until one block was ABRACADABRA. However, this word can start in the middle of a block. In other words, we considered a string a success only if the starting position of the word ABRACADABRA was divisible by 11. For example, FRZUNWRQXKLABRACADABRA would be recognized as success by this model but the same would not be true for AABRACADABRA. However, it is at least clear from this observation that 11\cdot 26^{11} is a strict upper bound for the expected waiting time. To find the exact solution, we need one very clever idea, which is the following:

Let’s Open a Casino!

Do I mean that abandoning our monkey and typewriter and investing our time and money in a casino is a better idea, at least in financial terms? This might indeed be the case, but here we will use a casino to determine the expected wait time for the ABRACADABRA problem. Unfortunately we won’t make any money along the way (in expectation) since our casino will be a fair one.

Let’s do the following thought experiment: let’s open a casino next to our typewriter. Before each keystroke, a new gambler comes to our casino and bets $1 that the next letter will be A. If he loses, he goes home disappointed. If he wins, he bets all the money he won on the event that the next letter will be B. Again, if he loses, he goes home disappointed. (This won’t wreak havoc on his financial situation, though, as he only loses $1 of his own money.) If he wins again, he bets all the money on the event that the next letter will be R, and so on.

If a gambler wins, how much does he win? We said that the casino would be fair, i.e. the expected outcome should be zero. That means that it the gambler bets $1, he should receive $26 if he wins, since the probability of getting the next letter right is exactly \frac{1}{26} (thus the expected value of the change in the gambler’s fortune is \frac{25}{26}\cdot (-1) + \frac{1}{26}\cdot (+25) = 0.

Let’s keep playing this game until the word ABRACADABRA first appears and let’s denote the number of keystrokes up to this time as T. As soon as we see this word, we close our casino. How much was the revenue of our casino then? Remember that before each keystroke, a new gambler comes in and bets $1, and if he wins, he will only bet the money he has received so far, so our revenue will be exactly T dollars.

How much will we have to pay for the winners? Note that the only winners in the last round are the players who bet on A. How many of them are there? There is one that just came in before the last keystroke and this was his first bet. He wins $26. There was one who came three keystrokes earlier and he made four successful bets (ABRA). He wins \$26^4. Finally there is the luckiest gambler who went through the whole ABRACADABRA sequence, his prize will be \$26^{11}. Thus our casino will have to give out 26^{11}+26^4+26 dollars in total, which is just under the price of 200,000 WhatsApp acquisitions.

Now we will make one crucial observation: even at the time when we close the casino, the casino is fair! Thus in expectation our expenses will be equal to our income. Our income is T dollars, the expected value of our expenses is 26^{11}+26^4+26 dollars, thus E(T)=26^{11}+26^4+26. A beautiful solution, isn’t it? So if our monkey types at 150 characters per minute on average, we will have to wait around 47 million years until we see ABRACADABRA. Oh well.

Time to be More Formal

After giving an intuitive outline of the solution, it is time to formalize the concepts that we used, to translate our fairy tales into mathematics. The mathematical model of the fair casino is called a martingale, named after a class of betting strategies that enjoyed popularity in 18th century France. The gambler’s fortune (or the casino’s, depending on our viewpoint) can be modeled with a sequence of random variables. X_0 will denote the gambler’s fortune before the game starts, X_1 the fortune after one round and so on. Such a sequence of random variables is called a stochastic process. We will require the expected value of the gambler’s fortune to be always finite.

How can we formalize the fairness of the game? Fairness means that the gambler’s fortune does not change in expectation, i.e. the expected value of X_n, given X_1, X_2, \ldots, X_{n-1} is the same as X_{n-1}. This can be written as E(X_n | X_1, X_2, \ldots, X_{n-1}) = X_{n-1} or, equivalently, E(X_n - X_{n-1} | X_1, X_2, \ldots, X_{n-1}) = 0.

The reader might be less comfortable with the first formulation. What does it mean, after all, that the conditional expected value of a random variable is another random variable? Shouldn’t the expected value be a number? The answer is that in order to have solid theoretical foundations for the definition of a martingale, we need a more sophisticated notion of conditional expectations. Such sophistication involves measure theory, which is outside the scope of this post. We will instead naively accept the definition above, and the reader can look up all the formal details in any serious probability text (such as [1]).

Clearly the fair casino we constructed for the ABRACADABRA exercise is an example of a martingale. Another example is the simple symmetric random walk on the number line: we start at 0, toss a coin in each step, and move one step in the positive or negative direction based on the outcome of our coin toss.

The Optional Stopping Theorem

Remember that we closed our casino as soon as the word ABRACADABRA appeared and we claimed that our casino was also fair at that time. In mathematical language, the closed casino is called a stopped martingale. The stopped martingale is constructed as follows: we wait until our martingale X exhibits a certain behaviour (e.g. the word ABRACADABRA is typed by the monkey), and we define a new martingale X’ as follows: let X'_n = X_n if n < T and X'_n = X_T if n \ge T where T denotes the stopping time, i.e. the time at which the desired event occurs. Notice that T itself is a random variable.

We require our stopping time T to depend only on the past, i.e. that at any time we should be able to decide whether the event that we are waiting for has already happened or not (without looking into the future). This is a very reasonable requirement. If we could look into the future, we could obviously cheat by closing our casino just before some gambler would win a huge prize.

We said that the expected wealth of the casino at the stopping time is the same as the initial wealth. This is guaranteed by Doob’s optional stopping theorem, which states that under certain conditions, the expected value of a martingale at the stopping time is equal to its expected initial value.

Theorem: (Doob’s optional stopping theorem) Let X_n be a martingale stopped at step T, and suppose one of the following three conditions hold:

  1. The stopping time T is almost surely bounded by some constant;
  2. The stopping time T is almost surely finite and every step of the stopped martingale X_n is almost surely bounded by some constant; or
  3. The expected stopping time E(T) is finite and the absolute value of the martingale increments |X_n-X_{n-1}| are almost surely bounded by a constant.

Then E(X_T) = E(X_0).

We omit the proof because it requires measure theory, but the interested reader can see it in these notes.

For applications, (1) and (2) are the trivial cases. In the ABRACADABRA problem, the third condition holds: the expected stopping time is finite (in fact, we showed using the geometric distribution that it is less than 26^{12}) and the absolute value of a martingale increment is either 1 or a net payoff which is bounded by 26^{11}+26^4+26. This shows that our solution is indeed correct.

Gambler’s Ruin

Another famous application of martingales is the gambler’s ruin problem. This problem models the following game: there are two players, the first player has a dollars, the second player has b dollars. In each round they toss a coin and the loser gives one dollar to the winner. The game ends when one of the players runs out of money. There are two obvious questions: (1) what is the probability that the first player wins and (2) how long will the game take in expectation?

Let X_n denote the change in the second player’s fortune, and set X_0 = 0. Let T_k denote the first time s when X_s = k. Then our first question can be formalized as trying to determine \Pr(T_{-b} < T_a). Let t = \min \{ T_{-b}, T_a\}. Clearly t is a stopping time. By the optional stopping theorem we have that

\displaystyle 0=E(X_0)=E(X_t)=-b\Pr(T_{-b} < T_a)+a(1-\Pr(T_{-b} < T_a))

thus \Pr(T_{-b} < T_a)=\frac{a}{a+b}.

I would like to ask the reader to try to answer the second question. It is a little bit trickier than the first one, though, so here is a hint: X_n^2-n is also a martingale (prove it), and applying the optional stopping theorem to it leads to the answer.

A Randomized Algorithm for 2-SAT

The reader is probably familiar with 3-SAT, the first problem shown to be NP-complete. Recall that 3-SAT is the following problem: given a boolean formula in conjunctive normal form with at most three literals in each clause, decide whether there is a satisfying truth assignment. It is natural to ask if or why 3 is special, i.e. why don’t we work with k-SAT for some k \ne 3 instead? Clearly the hardness of the problem is monotone increasing in k since k-SAT is a special case of (k+1)-SAT. On the other hand, SAT (without any bound on the number of literals per clause) is clearly in NP, thus 3-SAT is just as hard as k-SAT for any k>3. So the only question is: what can we say about 2-SAT?

It turns out that 2-SAT is easier than satisfiability in general: 2-SAT is in P. There are many algorithms for solving 2-SAT. Here is one deterministic algorithm: associate a graph to the 2-SAT instance such that there is one vertex for each variable and each negated variable and the literals x and y are connected by a directed edge if there is a clause (\bar x \lor y). Recall that \bar x \lor y is equivalent to x \implies y, so the edges show the implications between the variables. Clearly the 2-SAT instance is not satisfiable if there is a variable x such that there are directed paths x \to \bar x and \bar x \to x (since x \Leftrightarrow \bar x is always false). It can be shown that this is not only a sufficient but also a necessary condition for unsatisfiability, hence the 2-SAT instance is satisfiable if and only if there is are no such path. If there are directed paths from one vertex of a graph to another and vice versa then they are said to belong to the same strongly connected component. There are several graph algorithms for finding strongly connected components of directed graphs, the most well-known algorithms are all based on depth-first search.

Now we give a very simple randomized algorithm for 2-SAT (due to Christos Papadimitriou in a ’91 paper): start with an arbitrary truth assignment and while there are unsatisfied clauses, pick one and flip the truth value of a random literal in it. Stop after O(n^2) rounds where n denotes the number of variables. Clearly if the formula is not satisfiable then nothing can go wrong, we will never find a satisfying truth assignment. If the formula is satisfiable, we want to argue that with high probability we will find a satisfying truth assignment in O(n^2) steps.

The idea of the proof is the following: fix an arbitrary satisfying truth assignment and consider the Hamming distance of our current assignment from it. The Hamming distance of two truth assignments (or in general, of two binary vectors) is the number of coordinates in which they differ. Since we flip one bit in every step, this Hamming distance changes by \pm 1 in every round. It also easy to see that in every step the distance is at least as likely to be decreased as to be increased (since we pick an unsatisfied clause, which means at least one of the two literals in the clause differs in value from the satisfying assignment).

Thus this is an unfair “gambler’s ruin” problem where the gambler’s fortune is the Hamming distance from the solution, and it decreases with probability at least \frac{1}{2}. Such a stochastic process is called a supermartingale — and this is arguably a better model for real-life casinos. (If we flip the inequality, the stochastic process we get is called a submartingale.) Also, in this case the gambler’s fortune (the Hamming distance) cannot increase beyond n. We can also think of this process as a random walk on the set of integers: we start at some number and in each round we make one step to the left or to the right with some probability. If we use random walk terminology, 0 is called an absorbing barrier since we stop the process when we reach 0. The number n, on the other hand, is called a reflecting barrier: we cannot reach n+1, and whenever we get close we always bounce back.

There is an equivalent version of the optimal stopping theorem for supermartingales and submartingales, where the conditions are the same but the consequence holds with an inequality instead of equality. It follows from the optional stopping theorem that the gambler will be ruined (i.e. a satisfying truth assignment will be found) in O(n^2) steps with high probability.

[1] For a reference on stochastic processes and martingales, see the text of Durrett .