This article was written by my colleague, Cathie Yun. Cathie is an applied cryptographer and security engineer, currently working with me to make fully homomorphic encryption a reality at Google. She’s also done a lot of cool stuff with zero knowledge proofs.

In previous articles, we’ve discussed techniques used in Fully Homomorphic Encryption (FHE) schemes. The basis for many FHE schemes, as well as other privacy-preserving protocols, is the Learning With Errors (LWE) problem. In this article, we’ll talk about how to estimate the security of lattice-based schemes that rely on the hardness of LWE, as well as its widely used variant, Ring LWE (RLWE).

A previous article on modulus switching introduced LWE encryption, but as a refresher:

## Reminder of LWE

A literal repetition from the modulus switching article. The LWE encryption scheme I’ll use has the following parameters:

- A plaintext space $\mathbb{Z}/q\mathbb{Z}$, where $q \geq 2$ is a positive integer. This is the space that the underlying message comes from.
- An
*LWE dimension*$n \in \mathbb{N}$. - A discrete Gaussian
*error distribution*$ D$ with a mean of zero and a fixed standard deviation.

An LWE secret key is defined as a vector in $\{0, 1\}^n$ (uniformly sampled). An LWE ciphertext is defined as a vector $a = (a_1, \dots, a_n)$, sampled uniformly over $(\mathbb{Z} / q\mathbb{Z})^n$, and a scalar $b = \langle a, s \rangle + m + e$, where $e$ is drawn from $D$ and all arithmetic is done modulo $q$. Note that $e$ must be small for the encryption to be valid.

## Learning With Errors (LWE) security

Choosing appropriate LWE parameters is a nontrivial challenge when designing and implementing LWE based schemes, because there are conflicting requirements of security, correctness, and performance. Some of the parameters that can be manipulated are the LWE dimension $n$, error distribution $D$ (referred to in the next few sections as $X_e$), secret distribution $X_s$, and plaintext modulus $q$.

## Lattice Estimator

Here is where the Lattice Estimator tool comes to our assistance! The lattice estimator is a Sage module written by a group of lattice cryptography researchers which estimates the concrete security of Learning with Errors (LWE) instances.

For a given set of LWE parameters, the Lattice Estimator calculates the cost of all known efficient lattice attacks – for example, the Primal, Dual, and Coded-BKW attacks. It returns the estimated number of “rops” or “ring operations” required to carry out each attack; the attack that is the most efficient is the one that determines the security parameter. The bits of security for the parameter set can be calculated as $\log_2(\text{rops})$ for the most efficient attack.

## Running the Lattice Estimator

For example, let’s estimate the security of the security parameters originally published for the popular TFHE scheme:

```
n = 630
q = 2^32
Xs = UniformMod(2)
Xe = DiscreteGaussian(stddev=2^17)
```

After installing the Lattice Estimator and sage, we run the following commands in sage:

```
> from estimator import *
> schemes.TFHE630
LWEParameters(n=630, q=4294967296, Xs=D(σ=0.50, μ=-0.50), Xe=D(σ=131072.00), m=+Infinity, tag='TFHE630')
> _ = LWE.estimate(schemes.TFHE630)
bkw :: rop: ≈2^153.1, m: ≈2^139.4, mem: ≈2^132.6, b: 4, t1: 0, t2: 24, ℓ: 3, #cod: 552, #top: 0, #test: 78, tag: coded-bkw
usvp :: rop: ≈2^124.5, red: ≈2^124.5, δ: 1.004497, β: 335, d: 1123, tag: usvp
bdd :: rop: ≈2^131.0, red: ≈2^115.1, svp: ≈2^131.0, β: 301, η: 393, d: 1095, tag: bdd
bdd_hybrid :: rop: ≈2^185.3, red: ≈2^115.9, svp: ≈2^185.3, β: 301, η: 588, ζ: 0, |S|: 1, d: 1704, prob: 1, ↻: 1, tag: hybrid
bdd_mitm_hybrid :: rop: ≈2^265.5, red: ≈2^264.5, svp: ≈2^264.5, β: 301, η: 2, ζ: 215, |S|: ≈2^189.2, d: 1489, prob: ≈2^-146.6, ↻: ≈2^148.8, tag: hybrid
dual :: rop: ≈2^128.7, mem: ≈2^72.0, m: 551, β: 346, d: 1181, ↻: 1, tag: dual
dual_hybrid :: rop: ≈2^119.8, mem: ≈2^115.5, m: 516, β: 314, d: 1096, ↻: 1, ζ: 50, tag: dual_hybrid
```

In this example, the most efficient attack is the `dual_hybrid`

attack. It uses `2^119.8`

ring operations, and so these parameters provide `119.8`

bits of security. The reader may notice that the TFHE website claims those parameters give 128 bits of security. This discrepancy is due to the fact that they used an older library (the LWE estimator, which is no longer maintained), which doesn’t take into account the most up-to-date lattice attacks.

For further reading, Benjamin Curtis wrote an article about parameter selection for the CONCRETE implementation of the TFHE scheme. Benjamin Curtis, Martin Albrecht, and other researchers also used the Lattice Estimator to estimate all the LWE and NTRU schemes.

## Ring Learning with Errors (RLWE) security

It is often desirable to use Ring LWE instead of LWE, for greater efficiency and smaller key sizes (as Chris Peikert illustrates via meme). We’d like to estimate the security of a Ring LWE scheme, but it wasn’t immediately obvious to us how to do this, since the Lattice Estimator only operates over LWE instances. In order to use the Lattice Estimator for this security estimate, we first needed to do a reduction from the RLWE instance to an LWE instance.

## Attempted RLWE to LWE reduction

Given an RLWE instance with $ \text{RLWE_dimension} = k $ and $ \text{poly_log_degree} = N $, we can create a relation that *looks like* an LWE instance of $ \text{LWE_dimension} = N * k $ with the same security, as long as $N$ is a power of 2 and there are no known attacks that target the ring structure of RLWE that are more efficient than the best LWE attacks. Note: $N$ must be a power of 2 so that $x^N+1$ is a cyclotomic polynomial.

An RLWE encryption has the following form: $ (a_0(x), a_1(x), … a_{k-1}(x), b(x)) $

- Public polynomials: $ a_0(x), a_1(x), \dots a_{k-1}(x) \overset{{\scriptscriptstyle\$}}{\leftarrow} (\mathbb{Z}/{q \mathbb{Z}[x]} ) / (x^N + 1)^k$
- Secret (binary) polynomials: $ s_0(x), s_1(x), \dots s_{k-1}(x) \overset{{\scriptscriptstyle\$}}{\leftarrow} (\mathbb{B}_N[x])^k$
- Error: $ e(x) \overset{{\scriptscriptstyle\$}}{\leftarrow} \chi_e$
- RLWE instance: $ b(x) = \sum_{i=0}^{k-1} a_i(x) \cdot s_i(x) + e(x) \in (\mathbb{Z}/{q \mathbb{Z}[x]} ) / (x^N + 1)$

We would like to express this in the form of an LWE encryption. We can make start with the simple case, where $ k=1 $. Therefore, we will only be working with the zero-entry polynomials, $a_0(x)$ and $s_0(x)$. (For simplicity, in the next example you can ignore the zero-subscript and think of them as $a(x)$ and $s(x)$).

## Naive reduction for $k=1$ (wrong!)

**Naively**, if we simply defined the LWE $A$ matrix to be a concatenation of the coefficients of the RLWE polynomial $a(x)$, we get:

$$ A_{\text{LWE}} = ( a_{0, 0}, a_{0, 1}, \dots a_{0, N-1} ) $$

We can do the same for the LWE $s$ vector:

$$ s_{\text{LWE}} = ( s_{0, 0}, s_{0, 1}, \dots s_{0, N-1} ) $$

But this doesn’t give us the value of $b_{LWE}$ for the LWE encryption that we want. In particular, the first entry of $b_{LWE}$, which we can call $b_{\text{LWE}, 0}$, is simply a product of the first entries of $a_0(x)$ and $s_0(x)$:

$$ b_{\text{LWE}, 0} = a_{0, 0} \cdot s_{0, 0} + e_0 $$

However, we **want** $b_{\text{LWE}, 0}$ to be a sum of the products of all the coefficients of $a_0(x)$ and $s_0(x)$ that give us a zero-degree coefficient mod $x^N + 1$. This modulus is important because it causes the product of high-degree monomials to “wrap around” to smaller degree monomials because of the negacyclic property, such that $x^N \equiv -1 \mod x^N + 1$. So the constant term $b_{\text{LWE}, 0}$ should include all of the following terms:

$$\begin{aligned}

b_{\text{LWE}, 0} = & a_{0, 0} \cdot s_{0, 0} \\

– & a_{0, 1} \cdot s_{0, N-1} \\

– & a_{0, 2} \cdot s_{0, N-2} \\

– & \dots \\

– & a_{0, N-1} \cdot s_{0, 1}\\

+ & e_0\\

\end{aligned}

$$

## Improved reduction for $k=1$

We can achieve the desired value of $b_{\text{LWE}}$ by more strategically forming a matrix $A_{\text{LWE}}$, to reflect the negacyclic property of our polynomials in the RLWE space. We can keep the naive construction for $s_\text{LWE}$.

$$ A_{\text{LWE}} =

\begin{pmatrix}

a_{0, 0} & -a_{0, N-1} & -a_{0, N-2} & \dots & -a_{0, 1}\\

a_{0, 1} & a_{0, 0} & -a_{0, N-1} & \dots & -a_{0, 2}\\

\vdots & \ddots & & & \vdots \\

a_{0, N-1} & \dots & & & a_{0, 0} \\

\end{pmatrix}

$$

This definition of $A_\text{LWE}$ gives us the desired value for $b_\text{LWE}$, when $b_{\text{LWE}}$ is interpreted as the coefficients of a polynomial. As an example, we can write out the elements of the first row of $b_\text{LWE}$:

$$

\begin{aligned}

b_{\text{LWE}, 0} = & \sum_{i=0}^{N-1} A_{\text{LWE}, 0, i} \cdot s_{0, i} + e_0 \\

b_{\text{LWE}, 0} = & a_{0, 0} \cdot s_{0, 0} \\

– & a_{0, 1} \cdot s_{0, N-1} \\

– & a_{0, 2} \cdot s_{0, N-2} \\

– & \dots \\

– & a_{0, N-1} \cdot s_{0, 1}\\

+ & e_0 \\

\end{aligned}

$$

## Generalizing for all $k$

In the generalized $k$ case, we have the RLWE equation:

$$ b(x) = a_0(x) \cdot s_0(x) + a_1(x) \cdot s_1(x) \cdot a_{k-1}(x) \cdot s_{k-1}(x) + e(x) $$

We can construct the LWE elements as follows:

$$A_{\text{LWE}} =

\left ( \begin{array}{c|c|c|c}

A_{0, \text{LWE}} & A_{1, \text{LWE}} & \dots & A_{k-1, \text{LWE}} \end{array}

\right )

$$

where each sub-matrix is the construction from the previous section:

$$ A_{\text{LWE}} =

\begin{pmatrix}

a_{i, 0} & -a_{i, N-1} & -a_{i, N-2} & \dots & -a_{i, 1}\\

a_{i, 1} & a_{i, 0} & -a_{i, N-1} & \dots & -a_{i, 2}\\

\vdots & \ddots & & & \vdots \\

a_{i, N-1} & \dots & & & a_{i, 0} \\

\end{pmatrix}

$$

And the secret keys are stacked similarly:

$$ s_{\text{LWE}} = ( s_{0, 0}, s_{0, 1}, \dots s_{0, N-1} \mid s_{1, 0}, s_{1, 1}, \dots s_{1, N-1} \mid \dots ) $$

This is how we can reduce an RLWE instance with RLWE dimension $k$ and polynomial modulus degree $N$, to a relation that **looks like** an LWE instance of LWE dimension $N * k$.

## Caveats and open research

This reduction does not result in a correctly formed LWE instance, since an LWE instance would have a matrix $A$ that is randomly sampled, whereas the reduction results in an matrix $A$ that has cyclic structure, due to the cyclic property of the RLWE instance. This is why I’ve been emphasizing that the reduction produces an instance that *looks like* LWE. All currently known attacks on RLWE do not take advantage of the structure, but rather directly attack this transformed LWE instance. Whether the additional ring structure can be exploited in the design of more efficient attacks remains an open question in the lattice cryptography research community.

In her PhD thesis, Rachel Player mentions the RLWE to LWE security reduction:

In order to try to pick parameters in Ring-LWE-based schemes (FHE or otherwise) that we hope are sufficiently secure, we can choose parameters such that the underlying Ring-LWE instance should be hard to solve according to known attacks. Each Ring-LWE sample can be used to extract $n$ LWE samples. To the best of our knowledge, the most powerful attacks against $d$-sample Ring-LWE all work by instead attacking the $nd$-sample LWE problem. When estimating the security of a particular set of Ring-LWE parameters we therefore estimate the security of the induced set of LWE parameters.

This indicates that we can do this reduction for certain RLWE instances. However, we must be careful to ensure that the polynomial modulus degree $N$ is a power of two, because otherwise the error distribution “breaks”, as my colleague Baiyu Li explained to me in conversation:

The RLWE problem is typically defined in using the ring of integers of the cyclotomic field $\mathbb{Q}[X]/(f(X))$, where $f(X)$ is a cyclotomic polynomial of degree $k=\phi(N)$ (where $\phi$ is Euler’s totient function), and the error is a spherical Gaussian over the image of the canonical embedding into the complex numbers $\mathbb{C}^k$ (basically the images of primitive roots of unity under $f$). In many cases we set $N$ to be a power of 2, thus $f(X)=X^{N/2}+1$, since the canonical embedding for such $N$ has a nice property that the preimage of the spherical Gaussian error is also a spherical Gaussian over the coefficients of polynomials in $\mathbb{Q}[X]/(f(X))$. So in this case we can sample $k=N/2$ independent Gaussian numbers and use them as the coefficients of the error polynomial $e(x)$. For $N$ not a power of 2, $f(X)$ may have some low degree terms, and in order to get the spherical Gaussian with the same variance $s^2$ in the canonical embedding, we probably need to use a larger variance when sampling the error polynomial coefficients.

The RLWE we frequently use in practice is actually a specialized version called “polynomial LWE”, and instantiated with $N$ = power of 2 and so $f(X)=X^{N/2}+1$. For other parameters the two are not exactly the same. This paper has some explanations: https://eprint.iacr.org/2018/170.pdf

The error distribution “breaks” if $N$ is not a power of 2 due to the fact that the precise form of RLWE is not defined on integer polynomial rings $R = \mathbb{Z}[X]/(f(X))$, but is defined on its dual (or the dual in the underlying number field, which is a fractional ideal of $\mathbb{Q}[X]/(f(x))$), and the noise distribution is on the Minkowski embedding of this dual ring. For non-power of 2 $N$, the product mod $f$ of two small polynomials in $\mathbb{Q}[X]/(f(x))$ may be large, where small/large means their L2 norm on the coefficient vector. This means that in order to sample the required noise distribution, you may need a skewed coefficient distribution. Only when $N$ is a power of 2, the dual of $R$ is a scaling of $R$, and distance in the embedding of $R^{\text{dual}}$ is preserved in $R$, and so we can just sample iid gaussian coefficient to get the required noise.

Because working with a power-of-two RLWE polynomial modulus gives “nice” error behavior, this parameter choice is often recommended and chosen for concrete instantiations of RLWE. For example, the Homomorphic Encryption Standard

recommends and only analyzes the security of parameters for power-of-two cyclotomic fields for use in homomorphic encryption (though future versions of the standard aim to extend the security analysis to generic cyclotomic rings):

We stress that when the error is chosen from sufficiently wide and “well spread” distributions that match the ring at hand, we do not have meaningful attacks on RLWE that are better than LWE attacks, regardless of the ring. For power-of-two cyclotomics, it is sufficient to sample the noise in the polynomial basis, namely choosing the coefficients of the error polynomial $e \in \mathbb{Z}[x] / \phi_k(x)$ independently at random from a very “narrow” distribution.

Existing works analyzing and targeting the ring structure of RLWE include:

It would of course be great to have a definitive answer on whether we can be confident using this RLWE to LWE reduction to estimate the security of RLWE based schemes. In the meantime, we have seen many Fully Homomorphic Encryption (FHE) schemes using this RLWE to LWE reduction, and we hope that this article helps explain how that reduction works and the existing open questions around this approach.