“Practical Math” Preview: Collect Sensitive Survey Responses Privately

This is a draft of a chapter from my in-progress book, Practical Math for Programmers: A Tour of Mathematics in Production Software.

Tip: Determine an aggregate statistic about a sensitive question, when survey respondents do not trust that their responses will be kept secret.

Solution:

import random

def respond_privately(true_answer: bool) -> bool:
    '''Respond to a survey with plausible deniability about your answer.'''
    be_honest = random.random() < 0.5
    random_answer = random.random() < 0.5
    return true_answer if be_honest else random_answer

def aggregate_responses(responses: List[bool]) -> Tuple[float, float]:
    '''Return the estimated fraction of survey respondents that have a truthful
    Yes answer to the survey question.
    '''
    yes_response_count = sum(responses)
    n = len(responses)
    mean = 2 * yes_response_count / n - 0.5
    # Use n-1 when estimating variance, as per Bessel's correction.
    variance = 3 / (4 * (n - 1))
    return (mean, variance)

In the late 1960’s, most abortions were illegal in the United States. Daniel G. Horvitz, a statistician at The Research Triangle Institute in North Carolina and a leader in survey design for social sciences, was tasked with estimating how many women in North Carolina were receiving illegal abortions. The goal was to inform state and federal policymakers about the statistics around abortions, many of which were unreported, even when done legally.

The obstacles were obvious. As Horvitz put it, “a prudent woman would not divulge to a stranger the fact that she was party to a crime for which she could be prosecuted.” [Abernathy70] This resulted in a strong bias in survey responses. Similar issues had plagued surveys of illegal activity of all kinds, including drug abuse and violent crime. Lack of awareness into basic statistics about illegal behavior led to a variety of misconceptions, such as that abortions were not frequently sought out.

Horvitz worked with biostatisticians James Abernathy and Bernard Greenberg to test out a new method to overcome this obstacle, without violating the respondent’s privacy or ability to plausibly deny illegal behavior. The method, called randomized response, was invented by Stanley Warner in 1965, just a few years earlier. [Warner65] Warner’s method was a bit different from what we present in this Tip, but both Warner’s method and the code sample above use the same strategy of adding randomization to the survey.

The mechanism, as presented in the code above, requires respondents to start by flipping a coin. If heads, they answer the sensitive question truthfully. If tails, they flip a second coin to determine how to answer the question—heads resulting in a “yes” answer, tails in a “no” answer. Naturally, the coin flips are private and controlled by the respondent. And so if a respondent answers “Yes” to the question, they may plausibly claim the “Yes” was determined by the coin, preserving their privacy. The figure below describes this process as a diagram.

A branching diagram showing the process a survey respondent takes to record their response.

Another way to describe the outcome is to say that each respondent’s answer is a single bit of information that is flipped with probability 1/4. This is half way between two extremes on the privacy/accuracy tradeoff curve. The first extreme is a “perfectly honest” response, where the bit is never flipped and all information is preserved. The second extreme has the bit flipped with probability 1/2, which is equivalent to ignoring the question and choosing your answer completely at random, losing all information in the aggregate responses. In this perspective, the aggregate survey responses can be thought of as a digital signal, and the privacy mechanism adds noise to that signal.

It remains to determine how to recover the aggregate signal from these noisy responses. In other words, the surveyor cannot know any individual’s true answer, but they can, with some extra work, estimate statistics about the underlying population by correcting for the statistical bias. This is possible because the randomization is well understood. The expected fraction of “Yes” answers can be written as a function of the true fraction of “Yes” answers, and hence the true fraction can be solved for. In this case, where the random coin is fair, that formula is as follows (where $ \mathbf{P}$ stands for “the probability of”).

$ \displaystyle \mathbf{P}(\textup{Yes answer}) = \frac{1}{2} \mathbf{P}(\textup{Truthful yes answer}) + \frac{1}{4}$

And so we solve for $ \mathbf{P}(\textup{Truthful yes answer})$

$ \displaystyle \mathbf{P}(\textup{Truthful yes answer}) = 2 \mathbf{P}(\textup{Yes answer}) – \frac{1}{2}$

We can replace the true probability $ \mathbf{P}(\textup{Yes answer})$ above with our fraction of “Yes” responses from the survey, and the result is an estimate $ \hat{p}$ of $ \mathbf{P}(\textup{Truthful yes answer})$. This estimate is unbiased, but has additional variance—beyond the usual variance caused by picking a finite random sample from the population of interest—introduced by the randomization mechanism.

With a bit of effort, one can calculate that the variance of the estimate is

$ \displaystyle \textup{Var}(\hat{p}) = \frac{3}{4n}$

And via Chebyshev’s inequality, which bounds the likelihood that an estimator is far away from its expectation, we can craft a confidence interval and determine the needed sample sizes. Specifically, the estimate $ \hat{p}$ has additive error at most $ q$ with probability at most $ \textup{Var}(\hat{p}) / q^2$. This implies that for a confidence of $ 1-c$, one requires at least $ n \geq 3 / (4 c q^2)$ samples. For example, to achieve error 0.01 with 90 percent confidence ($ c=0.1$), one requires 7,500 responses.

Horvitz’s randomization mechanism didn’t use coin flips. Instead they used an opaque box with red or blue colored balls which the respondent, who was in the same room as the surveyor, would shake and privately reveal a random color through a small window facing away from the surveyor. The statistical principle is the same. Horvitz and his associates surveyed the women about their opinions of the privacy protections of this mechanism. When asked whether their friends would answer a direct question about abortion honestly, over 80% either believed their friends would lie, or were unsure. [footnote: A common trick in survey methodology when asking someone if they would be dishonest is to instead ask if their friends would be dishonest. This tends to elicit more honesty, because people are less likely to uphold a false perception of the moral integrity of others, and people also don’t realize that their opinion of their friends correlates with their own personal behavior and attitudes. In other words, liars don’t admit to lying, but they think lying is much more common than it really is.] But 60% were convinced there was no trick involved in the randomization, while 20% were unsure and 20% thought there was a trick. This suggests many people were convinced that Horvitz’s randomization mechanism provided the needed safety guarantees to answer honestly.

Horvitz’s survey was a resounding success, both for randomized response as a method and for measuring abortion prevalence. [Abernathy70] They estimated the abortion rate at about 22 per 100 conceptions, with a distinct racial bias—minorities were twice as likely as whites to receive an abortion. Comparing their findings to a prior nationwide study from 1955—the so-called Arden House estimate—which gave a range of between 200,000 and 1.2 million abortions per year, Horvitz’s team estimated more precisely that there were 699,000 abortions in 1955 in the United States, with a reported standard deviation of about 6,000, less than one percent. For 1967, the year of their study, they estimated 829,000.

Their estimate was referenced widely in the flurry of abortion law and court cases that followed due to a surging public interest in the topic. For example, it is cited in the 1970 California Supreme Court opinion for the case Ballard v. Anderson, which concerned whether a minor needs parental consent to receive an otherwise legal abortion. [Ballard71, Roemer71] It was also cited in amici curiae briefs submitted to the United States Supreme Court in 1971 for Roe v. Wade, the famous case that invalidated most U.S. laws making abortion illegal. One such brief was filed jointly by the country’s leading women’s rights organizations like the National Organization for Women. Citing Horvitz for this paragraph, it wrote, [Womens71]

While the realities of law enforcement, social and public health problems posed by abortion laws have been openly discussed […] only within a period of not more than the last ten years, one fact appears undeniable, although unverifiable statistically. There are at least one million illegal abortions in the United States each year. Indeed, studies indicate that, if the local law still has qualifying requirements, the relaxation in the law has not diminished to any substantial extent the numbers in which women procure illegal abortions.

It’s unclear how the authors got this one million number (Horvitz’s estimate was 20% less for 1967), nor what they meant by “unverifiable statistically.” It may have been a misinterpretation of the randomized response technique. In any event, randomized response played a crucial role in providing a foundation for political debate.

Despite Horvitz’s success, and decades of additional research on crime, drug use, and other sensitive topics, randomized response mechanisms have been applied poorly. In some cases, the desired randomization is inextricably complex, such as when requiring a continuous random number. In these cases, a manual randomization mechanism is too complex for a respondent to use accurately. Trying to use software-assisted devices can help, but can also produce mistrust in the interviewee. See [Rueda16] for additional discussion of these pitfalls and what software packages exist for assisting in using randomized response. See [Fox16] for an analysis of the statistical differences between the variety of methods used between 1970 and 2010.

In other contexts, analogues to randomized response may not elicit the intended effect. In the 1950’s, Utah used death by firing squad as capital punishment. To avoid a guilty conscience of the shooters, one of five marksmen was randomly given a blank, providing him some plausible deniability that he knew he had delivered the killing shot. However, this approach failed on two counts. First, once a shot was fired the marksman could tell whether the bullet was real based on the recoil. Second, a 20% chance of a blank was not enough to dissuade a guilty marksman from purposely missing. In the 1951 execution of Elisio Mares, all four real bullets missed the condemned man’s heart, hitting his chest, stomach, and hip. He died, but it was neither painless nor instant.

Of many lessons one might draw from the botched execution, one is that randomization mechanisms must take into account both the psychology of the participants as well as the severity of a failed outcome.

References

@book{Fox16,
  title = {{Randomized Response and Related Methods: Surveying Sensitive Data}},
  author = {James Alan Fox},
  edition = {2nd},
  year = {2016},
  doi = {10.4135/9781506300122},
}

@article{Abernathy70,
  author = {Abernathy, James R. and Greenberg, Bernard G. and Horvitz, Daniel G.
            },
  title = {{Estimates of induced abortion in urban North Carolina}},
  journal = {Demography},
  volume = {7},
  number = {1},
  pages = {19-29},
  year = {1970},
  month = {02},
  issn = {0070-3370},
  doi = {10.2307/2060019},
  url = {https://doi.org/10.2307/2060019},
}

@article{Warner65,
  author = {Stanley L. Warner},
  journal = {Journal of the American Statistical Association},
  number = {309},
  pages = {63--69},
  publisher = {{American Statistical Association, Taylor \& Francis, Ltd.}},
  title = {Randomized Response: A Survey Technique for Eliminating Evasive
           Answer Bias},
  volume = {60},
  year = {1965},
}

@article{Ballard71,
  title = {{Ballard v. Anderson}},
  journal = {California Supreme Court L.A. 29834},
  year = {1971},
  url = {https://caselaw.findlaw.com/ca-supreme-court/1826726.html},
}

@misc{Womens71,
  title = {{Motion for Leave to File Brief Amici Curiae on Behalf of Women’s
           Organizations and Named Women in Support of Appellants in Each Case,
           and Brief Amici Curiae.}},
  booktitle = {{Appellate Briefs for the case of Roe v. Wade}},
  number = {WL 128048},
  year = {1971},
  publisher = {Supreme Court of the United States},
}

@article{Roemer71,
  author = {R. Roemer},
  journal = {Am J Public Health},
  pages = {500--509},
  title = {Abortion law reform and repeal: legislative and judicial developments
           },
  volume = {61},
  number = {3},
  year = {1971},
}

@incollection{Rueda16,
  title = {Chapter 10 - Software for Randomized Response Techniques},
  editor = {Arijit Chaudhuri and Tasos C. Christofides and C.R. Rao},
  series = {Handbook of Statistics},
  publisher = {Elsevier},
  volume = {34},
  pages = {155-167},
  year = {2016},
  booktitle = {Data Gathering, Analysis and Protection of Privacy Through
               Randomized Response Techniques: Qualitative and Quantitative Human
               Traits},
  doi = {https://doi.org/10.1016/bs.host.2016.01.009},
  author = {M. Rueda and B. Cobo and A. Arcos and R. Arnab},
}

Earthmover Distance

Problem: Compute distance between points with uncertain locations (given by samples, or differing observations, or clusters).

For example, if I have the following three “points” in the plane, as indicated by their colors, which is closer, blue to green, or blue to red?

example-points.png

It’s not obvious, and there are multiple factors at work: the red points have fewer samples, but we can be more certain about the position; the blue points are less certain, but the closest non-blue point to a blue point is green; and the green points are equally plausibly “close to red” and “close to blue.” The centers of masses of the three sample sets are close to an equilateral triangle. In our example the “points” don’t overlap, but of course they could. And in particular, there should probably be a nonzero distance between two points whose sample sets have the same center of mass, as below. The distance quantifies the uncertainty.

same-centers.png

All this is to say that it’s not obvious how to define a distance measure that is consistent with perceptual ideas of what geometry and distance should be.

Solution (Earthmover distance): Treat each sample set $ A$ corresponding to a “point” as a discrete probability distribution, so that each sample $ x \in A$ has probability mass $ p_x = 1 / |A|$. The distance between $ A$ and $ B$ is the optional solution to the following linear program.

Each $ x \in A$ corresponds to a pile of dirt of height $ p_x$, and each $ y \in B$ corresponds to a hole of depth $ p_y$. The cost of moving a unit of dirt from $ x$ to $ y$ is the Euclidean distance $ d(x, y)$ between the points (or whatever hipster metric you want to use).

Let $ z_{x, y}$ be a real variable corresponding to an amount of dirt to move from $ x \in A$ to $ y \in B$, with cost $ d(x, y)$. Then the constraints are:

  • Each $ z_{x, y} \geq 0$, so dirt only moves from $ x$ to $ y$.
  • Every pile $ x \in A$ must vanish, i.e. for each fixed $ x \in A$, $ \sum_{y \in B} z_{x,y} = p_x$.
  • Likewise, every hole $ y \in B$ must be completely filled, i.e. $ \sum_{y \in B} z_{x,y} = p_y$.

The objective is to minimize the cost of doing this: $ \sum_{x, y \in A \times B} d(x, y) z_{x, y}$.

In python, using the ortools library (and leaving out a few docstrings and standard import statements, full code on Github):

from ortools.linear_solver import pywraplp

def earthmover_distance(p1, p2):
    dist1 = {x: count / len(p1) for (x, count) in Counter(p1).items()}
    dist2 = {x: count / len(p2) for (x, count) in Counter(p2).items()}
    solver = pywraplp.Solver('earthmover_distance', pywraplp.Solver.GLOP_LINEAR_PROGRAMMING)

    variables = dict()

    # for each pile in dist1, the constraint that says all the dirt must leave this pile
    dirt_leaving_constraints = defaultdict(lambda: 0)

    # for each hole in dist2, the constraint that says this hole must be filled
    dirt_filling_constraints = defaultdict(lambda: 0)

    # the objective
    objective = solver.Objective()
    objective.SetMinimization()

    for (x, dirt_at_x) in dist1.items():
        for (y, capacity_of_y) in dist2.items():
            amount_to_move_x_y = solver.NumVar(0, solver.infinity(), 'z_{%s, %s}' % (x, y))
            variables[(x, y)] = amount_to_move_x_y
            dirt_leaving_constraints[x] += amount_to_move_x_y
            dirt_filling_constraints[y] += amount_to_move_x_y
            objective.SetCoefficient(amount_to_move_x_y, euclidean_distance(x, y))

    for x, linear_combination in dirt_leaving_constraints.items():
        solver.Add(linear_combination == dist1[x])

    for y, linear_combination in dirt_filling_constraints.items():
        solver.Add(linear_combination == dist2[y])

    status = solver.Solve()
    if status not in [solver.OPTIMAL, solver.FEASIBLE]:
        raise Exception('Unable to find feasible solution')

    return objective.Value()

Discussion: I’ve heard about this metric many times as a way to compare probability distributions. For example, it shows up in an influential paper about fairness in machine learning, and a few other CS theory papers related to distribution testing.

One might ask: why not use other measures of dissimilarity for probability distributions (Chi-squared statistic, Kullback-Leibler divergence, etc.)? One answer is that these other measures only give useful information for pairs of distributions with the same support. An example from a talk of Justin Solomon succinctly clarifies what Earthmover distance achieves

Screen Shot 2018-03-03 at 6.11.00 PM.png

Also, why not just model the samples using, say, a normal distribution, and then compute the distance based on the parameters of the distributions? That is possible, and in fact makes for a potentially more efficient technique, but you lose some information by doing this. Ignoring that your data might not be approximately normal (it might have some curvature), with Earthmover distance, you get point-by-point details about how each data point affects the outcome.

This kind of attention to detail can be very important in certain situations. One that I’ve been paying close attention to recently is the problem of studying gerrymandering from a mathematical perspective. Justin Solomon of MIT is a champion of the Earthmover distance (see his fascinating talk here for more, with slides) which is just one topic in a field called “optimal transport.”

This has the potential to be useful in redistricting because of the nature of the redistricting problem. As I wrote previously, discussions of redistricting are chock-full of geometry—or at least geometric-sounding language—and people are very concerned with the apparent “compactness” of a districting plan. But the underlying data used to perform redistricting isn’t very accurate. The people who build the maps don’t have precise data on voting habits, or even locations where people live. Census tracts might not be perfectly aligned, and data can just plain have errors and uncertainty in other respects. So the data that district-map-drawers care about is uncertain much like our point clouds. With a theory of geometry that accounts for uncertainty (and the Earthmover distance is the “distance” part of that), one can come up with more robust, better tools for redistricting.

Solomon’s website has a ton of resources about this, under the names of “optimal transport” and “Wasserstein metric,” and his work extends from computing distances to computing important geometric values like the barycenter, computational advantages like parallelism.

Others in the field have come up with transparency techniques to make it clearer how the Earthmover distance relates to the geometry of the underlying space. This one is particularly fun because the explanations result in a path traveled from the start to the finish, and by setting up the underlying metric in just such a way, you can watch the distribution navigate a maze to get to its target. I like to imagine tiny ants carrying all that dirt.

Screen Shot 2018-03-03 at 6.15.50 PM.png

Finally, work of Shirdhonkar and Jacobs provide approximation algorithms that allow linear-time computation, instead of the worst-case-cubic runtime of a linear solver.

Bayesian Ranking for Rated Items

Problem: You have a catalog of items with discrete ratings (thumbs up/thumbs down, or 5-star ratings, etc.), and you want to display them in the “right” order.

Solution: In Python

'''
  score: [int], [int], [float] -&amp;gt; float

  Return the expected value of the rating for an item with known
  ratings specified by `ratings`, prior belief specified by
  `rating_prior`, and a utility function specified by `rating_utility`,
  assuming the ratings are a multinomial distribution and the prior
  belief is a Dirichlet distribution.
'''
def score(self, ratings, rating_prior, rating_utility):
    ratings = [r + p for (r, p) in zip(ratings, rating_prior)]
    score = sum(r * u for (r, u) in zip(ratings, rating_utility))
    return score / sum(ratings)

Discussion: This deceptively short solution can lead you on a long and winding path into the depths of statistics. I will do my best to give a short, clear version of the story.

As a working example I chose merely because I recently listened to a related podcast, say you’re selling mass-market romance novels—which, by all accounts, is a predictable genre. You have a list of books, each of which has been rated on a scale of 0-5 stars by some number of users. You want to display the top books first, so that time-constrained readers can experience the most titillating novels first, and newbies to the genre can get the best first time experience and be incentivized to buy more.

The setup required to arrive at the above code is the following, which I’ll phrase as a story.

Users’ feelings about a book, and subsequent votes, are independent draws from a known distribution (with unknown parameters). I will just call these distributions “discrete” distributions. So given a book and user, there is some unknown list $ (p_0, p_1, p_2, p_3, p_4, p_5)$ of probabilities ($ \sum_i p_i = 1$) for each possible rating a user could give for that book.

But how do users get these probabilities? In this story, the probabilities are the output of a randomized procedure that generates distributions. That modeling assumption is called a “Dirichlet prior,” with Dirichlet meaning it generates discrete distributions, and prior meaning it encodes domain-specific information (such as the fraction of 4-star ratings for a typical romance novel).

So the story is you have a book, and that book gets a Dirichlet distribution (unknown to us), and then when a user comes along they sample from the Dirichlet distribution to get a discrete distribution, which they then draw from to choose a rating. We observe the ratings, and we need to find the book’s underlying Dirichlet. We start by assigning it some default Dirichlet (the prior) and update that Dirichlet as we observe new ratings. Some other assumptions:

  1. Books are indistinguishable except in the parameters of their Dirichlet distribution.
  2. The parameters of a book’s Dirichlet distribution don’t change over time, and inherently reflect the book’s value.

So a Dirichlet distribution is a process that produces discrete distributions. For simplicity, in this post we will say a Dirichlet distribution is parameterized by a list of six integers $ (n_0, \dots, n_5)$, one for each possible star rating. These values represent our belief in the “typical” distribution of votes for a new book. We’ll discuss more about how to set the values later. Sampling a value (a book’s list of probabilities) from the Dirichlet distribution is not trivial, but we don’t need to do that for this program. Rather, we need to be able to interpret a fixed Dirichlet distribution, and update it given some observed votes.

The interpretation we use for a Dirichlet distribution is its expected value, which, recall, is the parameters of a discrete distribution. In particular if $ n = \sum_i n_i$, then the expected value is a discrete distribution whose probabilities are

$ \displaystyle \left (  \frac{n_0}{n}, \frac{n_1}{n}, \dots, \frac{n_5}{n} \right )$

So you can think of each integer in the specification of a Dirichlet as “ghost ratings,” sometimes called pseudocounts, and we’re saying the probability is proportional to the count.

This is great, because if we knew the true Dirichlet distribution for a book, we could compute its ranking without a second thought. The ranking would simply be the expected star rating:

def simple_score(distribution):
   return sum(i * p for (i, p) in enumerate(distribution))

Putting books with the highest score on top would maximize the expected happiness of a user visiting the site, provided that happiness matches the user’s voting behavior, since the simple_score is just the expected vote.

Also note that all the rating system needs to make this work is that the rating options are linearly ordered. So a thumbs up/down (heaving bosom/flaccid member?) would work, too. We don’t need to know how happy it makes them to see a 5-star vs 4-star book. However, because as we’ll see next we have to approximate the distribution, and hence have uncertainty for scores of books with only a few ratings, it helps to incorporate numerical utility values (we’ll see this at the end).

Next, to update a given Dirichlet distribution with the results of some observed ratings, we have to dig a bit deeper into Bayes rule and the formulas for sampling from a Dirichlet distribution. Rather than do that, I’ll point you to this nice writeup by Jonathan Huang, where the core of the derivation is in Section 2.3 (page 4), and remark that the rule for updating for a new observation is to just add it to the existing counts.

Theorem: Given a Dirichlet distribution with parameters $ (n_1, \dots, n_k)$ and a new observation of outcome $ i$, the updated Dirichlet distribution has parameters $ (n_1, \dots, n_{i-1}, n_i + 1, n_{i+1}, \dots, n_k)$. That is, you just update the $ i$-th entry by adding $ 1$ to it.

This particular arithmetic to do the update is a mathematical consequence (derived in the link above) of the philosophical assumption that Bayes rule is how you should model your beliefs about uncertainty, coupled with the assumption that the Dirichlet process is how the users actually arrive at their votes.

The initial values $ (n_0, \dots, n_5)$ for star ratings should be picked so that they represent the average rating distribution among all prior books, since this is used as the default voting distribution for a new, unknown book. If you have more information about whether a book is likely to be popular, you can use a different prior. For example, if JK Rowling wrote a Harry Potter Romance novel that was part of the canon, you could pretty much guarantee it would be popular, and set $ n_5$ high compared to $ n_0$. Of course, if it were actually popular you could just wait for the good ratings to stream in, so tinkering with these values on a per-book basis might not help much. On the other hand, most books by unknown authors are bad, and $ n_5$ should be close to zero. Selecting a prior dictates how influential ratings of new items are compared to ratings of items with many votes. The more pseudocounts you add to the prior, the less new votes count.

This gets us to the following code for star ratings.

def score(self, ratings, rating_prior):
    ratings = [r + p for (r, p) in zip(ratings, rating_prior)]
    score = sum(i * u for (i, u) in enumerate(ratings))
    return score / sum(ratings)

The only thing missing from the solution at the beginning is the utilities. The utilities are useful for two reasons. First, because books with few ratings encode a lot of uncertainty, having an idea about how extreme a feeling is implied by a specific rating allows one to give better rankings of new books.

Second, for many services, such as taxi rides on Lyft, the default star rating tends to be a 5-star, and 4-star or lower mean something went wrong. For books, 3-4 stars is a default while 5-star means you were very happy.

The utilities parameter allows you to weight rating outcomes appropriately. So if you are in a Lyft-like scenario, you might specify utilities like [-10, -5, -3, -2, 1] to denote that a 4-star rating has the same negative impact as two 5-star ratings would positively contribute. On the other hand, for books the gap between 4-star and 5-star is much less than the gap between 3-star and 4-star. The utilities simply allow you to calibrate how the votes should be valued in comparison to each other, instead of using their literal star counts.

Singular Value Decomposition Part 2: Theorem, Proof, Algorithm

I’m just going to jump right into the definitions and rigor, so if you haven’t read the previous post motivating the singular value decomposition, go back and do that first. This post will be theorem, proof, algorithm, data. The data set we test on is a thousand-story CNN news data set. All of the data, code, and examples used in this post is in a github repository, as usual.

We start with the best-approximating $ k$-dimensional linear subspace.

Definition: Let $ X = \{ x_1, \dots, x_m \}$ be a set of $ m$ points in $ \mathbb{R}^n$. The best approximating $ k$-dimensional linear subspace of $ X$ is the $ k$-dimensional linear subspace $ V \subset \mathbb{R}^n$ which minimizes the sum of the squared distances from the points in $ X$ to $ V$.

Let me clarify what I mean by minimizing the sum of squared distances. First we’ll start with the simple case: we have a vector $ x \in X$, and a candidate line $ L$ (a 1-dimensional subspace) that is the span of a unit vector $ v$. The squared distance from $ x$ to the line spanned by $ v$ is the squared length of $ x$ minus the squared length of the projection of $ x$ onto $ v$. Here’s a picture.

vectormax

I’m saying that the pink vector $ z$ in the picture is the difference of the black and green vectors $ x-y$, and that the “distance” from $ x$ to $ v$ is the length of the pink vector. The reason is just the Pythagorean theorem: the vector $ x$ is the hypotenuse of a right triangle whose other two sides are the projected vector $ y$ and the difference vector $ z$.

Let’s throw down some notation. I’ll call $ \textup{proj}_v: \mathbb{R}^n \to \mathbb{R}^n$ the linear map that takes as input a vector $ x$ and produces as output the projection of $ x$ onto $ v$. In fact we have a brief formula for this when $ v$ is a unit vector. If we call $ x \cdot v$ the usual dot product, then $ \textup{proj}_v(x) = (x \cdot v)v$. That’s $ v$ scaled by the inner product of $ x$ and $ v$. In the picture above, since the line $ L$ is the span of the vector $ v$, that means that $ y = \textup{proj}_v(x)$ and $ z = x -\textup{proj}_v(x) = x-y$.

The dot-product formula is useful for us because it allows us to compute the squared length of the projection by taking a dot product $ |x \cdot v|^2$. So then a formula for the distance of $ x$ from the line spanned by the unit vector $ v$ is

$ \displaystyle (\textup{dist}_v(x))^2 = \left ( \sum_{i=1}^n x_i^2 \right ) – |x \cdot v|^2$

This formula is just a restatement of the Pythagorean theorem for perpendicular vectors.

$ \displaystyle \sum_{i} x_i^2 = (\textup{proj}_v(x))^2 + (\textup{dist}_v(x))^2$

In particular, the difference vector we originally called $ z$ has squared length $ \textup{dist}_v(x)^2$. The vector $ y$, which is perpendicular to $ z$ and is also the projection of $ x$ onto $ L$, it’s squared length is $ (\textup{proj}_v(x))^2$. And the Pythagorean theorem tells us that summing those two squared lengths gives you the squared length of the hypotenuse $ x$.

If we were trying to find the best approximating 1-dimensional subspace for a set of data points $ X$, then we’d want to minimize the sum of the squared distances for every point $ x \in X$. Namely, we want the $ v$ that solves $ \min_{|v|=1} \sum_{x \in X} (\textup{dist}_v(x))^2$.

With some slight algebra we can make our life easier. The short version: minimizing the sum of squared distances is the same thing as maximizing the sum of squared lengths of the projections. The longer version: let’s go back to a single point $ x$ and the line spanned by $ v$. The Pythagorean theorem told us that

$ \displaystyle \sum_{i} x_i^2 = (\textup{proj}_v(x))^2 + (\textup{dist}_v(x))^2$

The squared length of $ x$ is constant. It’s an input to the algorithm and it doesn’t change through a run of the algorithm. So we get the squared distance by subtracting $ (\textup{proj}_v(x))^2$ from a constant number,

$ \displaystyle \sum_{i} x_i^2 – (\textup{proj}_v(x))^2 = (\textup{dist}_v(x))^2$

which means if we want to minimize the squared distance, we can instead maximize the squared projection. Maximizing the subtracted thing minimizes the whole expression.

It works the same way if you’re summing over all the data points in $ X$. In fact, we can say it much more compactly this way. If the rows of $ A$ are your data points, then $ Av$ contains as each entry the (signed) dot products $ x_i \cdot v$. And the squared norm of this vector, $ |Av|^2$, is exactly the sum of the squared lengths of the projections of the data onto the line spanned by $ v$. The last thing is that maximizing a square is the same as maximizing its square root, so we can switch freely between saying our objective is to find the unit vector $ v$ that maximizes $ |Av|$ and that which maximizes $ |Av|^2$.

At this point you should be thinking,

Great, we have written down an optimization problem: $ \max_{v : |v|=1} |Av|$. If we could solve this, we’d have the best 1-dimensional linear approximation to the data contained in the rows of $ A$. But (1) how do we solve that problem? And (2) you promised a $ k$-dimensional approximating subspace. I feel betrayed! Swindled! Bamboozled!

Here’s the fantastic thing. We can solve the 1-dimensional optimization problem efficiently (we’ll do it later in this post), and (2) is answered by the following theorem.

The SVD Theorem: Computing the best $ k$-dimensional subspace reduces to $ k$ applications of the one-dimensional problem.

We will prove this after we introduce the terms “singular value” and “singular vector.”

Singular values and vectors

As I just said, we can get the best $ k$-dimensional approximating linear subspace by solving the one-dimensional maximization problem $ k$ times. The singular vectors of $ A$ are defined recursively as the solutions to these sub-problems. That is, I’ll call $ v_1$ the first singular vector of $ A$, and it is:

$ \displaystyle v_1 = \arg \max_{v, |v|=1} |Av|$

And the corresponding first singular value, denoted $ \sigma_1(A)$, is the maximal value of the optimization objective, i.e. $ |Av_1|$. (I will use this term frequently, that $ |Av|$ is the “objective” of the optimization problem.) Informally speaking, $ (\sigma_1(A))^2$ represents how much of the data was captured by the first singular vector. Meaning, how close the vectors are to lying on the line spanned by $ v_1$. Larger values imply the approximation is better. In fact, if all the data points lie on a line, then $ (\sigma_1(A))^2$ is the sum of the squared norms of the rows of $ A$.

Now here is where we see the reduction from the $ k$-dimensional case to the 1-dimensional case. To find the best 2-dimensional subspace, you first find the best one-dimensional subspace (spanned by $ v_1$), and then find the best 1-dimensional subspace, but only considering those subspaces that are the spans of unit vectors perpendicular to $ v_1$. The notation for “vectors $ v$ perpendicular to $ v_1$” is $ v \perp v_1$. Restating, the second singular vector $ v _2$ is defined as

$ \displaystyle v_2 = \arg \max_{v \perp v_1, |v| = 1} |Av|$

And the SVD theorem implies the subspace spanned by $ \{ v_1, v_2 \}$ is the best 2-dimensional linear approximation to the data. Likewise $ \sigma_2(A) = |Av_2|$ is the second singular value. Its squared magnitude tells us how much of the data that was not “captured” by $ v_1$ is captured by $ v_2$. Again, if the data lies in a 2-dimensional subspace, then the span of $ \{ v_1, v_2 \}$ will be that subspace.

We can continue this process. Recursively define $ v_k$, the $ k$-th singular vector, to be the vector which maximizes $ |Av|$, when $ v$ is considered only among the unit vectors which are perpendicular to $ \textup{span} \{ v_1, \dots, v_{k-1} \}$. The corresponding singular value $ \sigma_k(A)$ is the value of the optimization problem.

As a side note, because of the way we defined the singular values as the objective values of “nested” optimization problems, the singular values are decreasing, $ \sigma_1(A) \geq \sigma_2(A) \geq \dots \geq \sigma_n(A) \geq 0$. This is obvious: you only pick $ v_2$ in the second optimization problem because you already picked $ v_1$ which gave a bigger singular value, so $ v_2$’s objective can’t be bigger.

If you keep doing this, one of two things happen. Either you reach $ v_n$ and since the domain is $ n$-dimensional there are no remaining vectors to choose from, the $ v_i$ are an orthonormal basis of $ \mathbb{R}^n$. This means that the data in $ A$ contains a full-rank submatrix. The data does not lie in any smaller-dimensional subspace. This is what you’d expect from real data.

Alternatively, you could get to a stage $ v_k$ with $ k < n$ and when you try to solve the optimization problem you find that every perpendicular $ v$ has $ Av = 0$. In this case, the data actually does lie in a $ k$-dimensional subspace, and the first-through-$ k$-th singular vectors you computed span this subspace.

Let’s do a quick sanity check: how do we know that the singular vectors $ v_i$ form a basis? Well formally they only span a basis of the row space of $ A$, i.e. a basis of the subspace spanned by the data contained in the rows of $ A$. But either way the point is that each $ v_{i+1}$ spans a new dimension from the previous $ v_1, \dots, v_i$ because we’re choosing $ v_{i+1}$ to be orthogonal to all the previous $ v_i$. So the answer to our sanity check is “by construction.”

Back to the singular vectors, the discussion from the last post tells us intuitively that the data is probably never in a small subspace.  You never expect the process of finding singular vectors to stop before step $ n$, and if it does you take a step back and ask if something deeper is going on. Instead, in real life you specify how much of the data you want to capture, and you keep computing singular vectors until you’ve passed the threshold. Alternatively, you specify the amount of computing resources you’d like to spend by fixing the number of singular vectors you’ll compute ahead of time, and settle for however good the $ k$-dimensional approximation is.

Before we get into any code or solve the 1-dimensional optimization problem, let’s prove the SVD theorem.

Proof of SVD theorem.

Recall we’re trying to prove that the first $ k$ singular vectors provide a linear subspace $ W$ which maximizes the squared-sum of the projections of the data onto $ W$. For $ k=1$ this is trivial, because we defined $ v_1$ to be the solution to that optimization problem. The case of $ k=2$ contains all the important features of the general inductive step. Let $ W$ be any best-approximating 2-dimensional linear subspace for the rows of $ A$. We’ll show that the subspace spanned by the two singular vectors $ v_1, v_2$ is at least as good (and hence equally good).

Let $ w_1, w_2$ be any orthonormal basis for $ W$ and let $ |Aw_1|^2 + |Aw_2|^2$ be the quantity that we’re trying to maximize (and which $ W$ maximizes by assumption). Moreover, we can pick the basis vector $ w_2$ to be perpendicular to $ v_1$. To prove this we consider two cases: either $ v_1$ is already perpendicular to $ W$ in which case it’s trivial, or else $ v_1$ isn’t perpendicular to $ W$ and you can choose $ w_1$ to be $ \textup{proj}_W(v_1)$ and choose $ w_2$ to be any unit vector perpendicular to $ w_1$.

Now since $ v_1$ maximizes $ |Av|$, we have $ |Av_1|^2 \geq |Aw_1|^2$. Moreover, since $ w_2$ is perpendicular to $ v_1$, the way we chose $ v_2$ also makes $ |Av_2|^2 \geq |Aw_2|^2$. Hence the objective $ |Av_1|^2 + |Av_2|^2 \geq |Aw_1|^2 + |Aw_2|^2$, as desired.

For the general case of $ k$, the inductive hypothesis tells us that the first $ k$ terms of the objective for $ k+1$ singular vectors is maximized, and we just have to pick any vector $ w_{k+1}$ that is perpendicular to all $ v_1, v_2, \dots, v_k$, and the rest of the proof is just like the 2-dimensional case.

$ \square$

Now remember that in the last post we started with the definition of the SVD as a decomposition of a matrix $ A = U\Sigma V^T$? And then we said that this is a certain kind of change of basis? Well the singular vectors $ v_i$ together form the columns of the matrix $ V$ (the rows of $ V^T$), and the corresponding singular values $ \sigma_i(A)$ are the diagonal entries of $ \Sigma$. When $ A$ is understood we’ll abbreviate the singular value as $ \sigma_i$.

To reiterate with the thoughts from last post, the process of applying $ A$ is exactly recovered by the process of first projecting onto the (full-rank space of) singular vectors $ v_1, \dots, v_k$, scaling each coordinate of that projection according to the corresponding singular values, and then applying this $ U$ thing we haven’t talked about yet.

So let’s determine what $ U$ has to be. The way we picked $ v_i$ to make $ A$ diagonal gives us an immediate suggestion: use the $ Av_i$ as the columns of $ U$. Indeed, define $ u_i = Av_i$, the images of the singular vectors under $ A$. We can swiftly show the $ u_i$ form a basis of the image of $ A$. The reason is because if $ v = \sum_i c_i v_i$ (using all $ n$ of the singular vectors $ v_i$), then by linearity $ Av = \sum_{i} c_i Av_i = \sum_i c_i u_i$. It is also easy to see why the $ u_i$ are orthogonal (prove it as an exercise). Let’s further make sure the $ u_i$ are unit vectors and redefine them as $ u_i = \frac{1}{\sigma_i}Av_i$

If you put these thoughts together, you can say exactly what $ A$ does to any given vector $ x$. Since the $ v_i$ form an orthonormal basis, $ x = \sum_i (x \cdot v_i) v_i$, and then applying $ A$ gives

$ \displaystyle \begin{aligned}Ax &= A \left ( \sum_i (x \cdot v_i) v_i \right ) \\  &= \sum_i (x \cdot v_i) A_i v_i \\ &= \sum_i (x \cdot v_i) \sigma_i u_i \end{aligned}$

If you’ve been closely reading this blog in the last few months, you’ll recognize a very nice way to write the last line of the above equation. It’s an outer product. So depending on your favorite symbols, you’d write this as either $ A = \sum_{i} \sigma_i u_i \otimes v_i$ or $ A = \sum_i \sigma_i u_i v_i^T$. Or, if you like expressing things as matrix factorizations, as $ A = U\Sigma V^T$. All three are describing the same object.

Let’s move on to some code.

A black box example

Before we implement SVD from scratch (an urge that commands me from the depths of my soul!), let’s see a black-box example that uses existing tools. For this we’ll use the numpy library.

Recall our movie-rating matrix from the last post:

movieratings

The code to compute the svd of this matrix is as simple as it gets:

from numpy.linalg import svd

movieRatings = [
    [2, 5, 3],
    [1, 2, 1],
    [4, 1, 1],
    [3, 5, 2],
    [5, 3, 1],
    [4, 5, 5],
    [2, 4, 2],
    [2, 2, 5],
]

U, singularValues, V = svd(movieRatings)

Printing these values out gives

[[-0.39458526  0.23923575 -0.35445911 -0.38062172 -0.29836818 -0.49464816 -0.30703202 -0.29763321]
 [-0.15830232  0.03054913 -0.15299759 -0.45334816  0.31122898  0.23892035 -0.37313346  0.67223457]
 [-0.22155201 -0.52086121  0.39334917 -0.14974792 -0.65963979  0.00488292 -0.00783684  0.25934607]
 [-0.39692635 -0.08649009 -0.41052882  0.74387448 -0.10629499  0.01372565 -0.17959298  0.26333462]
 [-0.34630257 -0.64128825  0.07382859 -0.04494155  0.58000668 -0.25806239  0.00211823 -0.24154726]
 [-0.53347449  0.19168874  0.19949342 -0.03942604  0.00424495  0.68715732 -0.06957561 -0.40033035]
 [-0.31660464  0.06109826 -0.30599517 -0.19611823 -0.01334272  0.01446975  0.85185852  0.19463493]
 [-0.32840223  0.45970413  0.62354764  0.1783041   0.17631186 -0.39879476  0.06065902  0.25771578]]
[ 15.09626916   4.30056855   3.40701739]
[[-0.54184808 -0.67070995 -0.50650649]
 [-0.75152295  0.11680911  0.64928336]
 [ 0.37631623 -0.73246419  0.56734672]]

Now this is a bit weird, because the matrices $ U, V$ are the wrong shape! Remember, there are only supposed to be three vectors since the input matrix has rank three. So what gives? This is a distinction that goes by the name “full” versus “reduced” SVD. The idea goes back to our original statement that $ U \Sigma V^T$ is a decomposition with $ U, V^T$ both orthogonal and square matrices. But in the derivation we did in the last section, the $ U$ and $ V$ were not square. The singular vectors $ v_i$ could potentially stop before even becoming full rank.

In order to get to square matrices, what people sometimes do is take the two bases $ v_1, \dots, v_k$ and $ u_1, \dots, u_k$ and arbitrarily choose ways to complete them to a full orthonormal basis of their respective vector spaces. In other words, they just make the matrix square by filling it with data for no reason other than that it’s sometimes nice to have a complete basis. We don’t care about this. To be honest, I think the only place this comes in useful is in the desire to be particularly tidy in a mathematical formulation of something.

We can still work with it programmatically. By fudging around a bit with numpy’s shapes to get a diagonal matrix, we can reconstruct the input rating matrix from the factors.

Sigma = np.vstack([
    np.diag(singularValues),
    np.zeros((5, 3)),
])

print(np.round(movieRatings - np.dot(U, np.dot(Sigma, V)), decimals=10))

And the output is, as one expects, a matrix of all zeros. Meaning that we decomposed the movie rating matrix, and built it back up from the factors.

We can actually get the SVD as we defined it (with rectangular matrices) by passing a special flag to numpy’s svd.

U, singularValues, V = svd(movieRatings, full_matrices=False)
print(U)
print(singularValues)
print(V)

Sigma = np.diag(singularValues)
print(np.round(movieRatings - np.dot(U, np.dot(Sigma, V)), decimals=10))

And the result

[[-0.39458526  0.23923575 -0.35445911]
 [-0.15830232  0.03054913 -0.15299759]
 [-0.22155201 -0.52086121  0.39334917]
 [-0.39692635 -0.08649009 -0.41052882]
 [-0.34630257 -0.64128825  0.07382859]
 [-0.53347449  0.19168874  0.19949342]
 [-0.31660464  0.06109826 -0.30599517]
 [-0.32840223  0.45970413  0.62354764]]
[ 15.09626916   4.30056855   3.40701739]
[[-0.54184808 -0.67070995 -0.50650649]
 [-0.75152295  0.11680911  0.64928336]
 [ 0.37631623 -0.73246419  0.56734672]]
[[-0. -0. -0.]
 [-0. -0.  0.]
 [ 0. -0.  0.]
 [-0. -0. -0.]
 [-0. -0. -0.]
 [-0. -0. -0.]
 [-0. -0. -0.]
 [ 0. -0. -0.]]

This makes the reconstruction less messy, since we can just multiply everything without having to add extra rows of zeros to $ \Sigma$.

What do the singular vectors and values tell us about the movie rating matrix? (Besides nothing, since it’s a contrived example) You’ll notice that the first singular vector $ \sigma_1 > 15$ while the other two singular values are around $ 4$. This tells us that the first singular vector covers a large part of the structure of the matrix. I.e., a rank-1 matrix would be a pretty good approximation to the whole thing. As an exercise to the reader, write a program that evaluates this claim (how good is “good”?).

The greedy optimization routine

Now we’re going to write SVD from scratch. We’ll first implement the greedy algorithm for the 1-d optimization problem, and then we’ll perform the inductive step to get a full algorithm. Then we’ll run it on the CNN data set.

The method we’ll use to solve the 1-dimensional problem isn’t necessarily industry strength (see this document for a hint of what industry strength looks like), but it is simple conceptually. It’s called the power method. Now that we have our decomposition of theorem, understanding how the power method works is quite easy.

Let’s work in the language of a matrix decomposition $ A = U \Sigma V^T$, more for practice with that language than anything else (using outer products would give us the same result with slightly different computations). Then let’s observe $ A^T A$, wherein we’ll use the fact that $ U$ is orthonormal and so $ U^TU$ is the identity matrix:

$ \displaystyle A^TA = (U \Sigma V^T)^T(U \Sigma V^T) = V \Sigma U^TU \Sigma V^T = V \Sigma^2 V^T$

So we can completely eliminate $ U$ from the discussion, and look at just $ V \Sigma^2 V^T$. And what’s nice about this matrix is that we can compute its eigenvectors, and eigenvectors turn out to be exactly the singular vectors. The corresponding eigenvalues are the squared singular values. This should be clear from the above derivation. If you apply $ (V \Sigma^2 V^T)$ to any $ v_i$, the only parts of the product that aren’t zero are the ones involving $ v_i$ with itself, and the scalar $ \sigma_i^2$ factors in smoothly. It’s dead simple to check.

Theorem: Let $ x$ be a random unit vector and let $ B = A^TA = V \Sigma^2 V^T$. Then with high probability, $ \lim_{s \to \infty} B^s x$ is in the span of the first singular vector $ v_1$. If we normalize $ B^s x$ to a unit vector at each $ s$, then furthermore the limit is $ v_1$.

Proof. Start with a random unit vector $ x$, and write it in terms of the singular vectors $ x = \sum_i c_i v_i$. That means $ Bx = \sum_i c_i \sigma_i^2 v_i$. If you recursively apply this logic, you get $ B^s x = \sum_i c_i \sigma_i^{2s} v_i$. In particular, the dot product of $ (B^s x)$ with any $ v_j$ is $ c_i \sigma_j^{2s}$.

What this means is that so long as the first singular value $ \sigma_1$ is sufficiently larger than the second one $ \sigma_2$, and in turn all the other singular values, the part of $ B^s x$  corresponding to $ v_1$ will be much larger than the rest. Recall that if you expand a vector in terms of an orthonormal basis, in this case $ B^s x$ expanded in the $ v_i$, the coefficient of $ B^s x$ on $ v_j$ is exactly the dot product. So to say that $ B^sx$ converges to being in the span of $ v_1$ is the same as saying that the ratio of these coefficients, $ |(B^s x \cdot v_1)| / |(B^s x \cdot v_j)| \to \infty$ for any $ j$. In other words, the coefficient corresponding to the first singular vector dominates all of the others. And so if we normalize, the coefficient of $ B^s x$ corresponding to $ v_1$ tends to 1, while the rest tend to zero.

Indeed, this ratio is just $ (\sigma_1 / \sigma_j)^{2s}$ and the base of this exponential is bigger than 1.

$ \square$

If you want to be a little more precise and find bounds on the number of iterations required to converge, you can. The worry is that your random starting vector is “too close” to one of the smaller singular vectors $ v_j$, so that if the ratio of $ \sigma_1 / \sigma_j$ is small, then the “pull” of $ v_1$ won’t outweigh the pull of $ v_j$ fast enough. Choosing a random unit vector allows you to ensure with high probability that this doesn’t happen. And conditioned on it not happening (or measuring “how far the event is from happening” precisely), you can compute a precise number of iterations required to converge. The last two pages of these lecture notes have all the details.

We won’t compute a precise number of iterations. Instead we’ll just compute until the angle between $ B^{s+1}x$ and $ B^s x$ is very small. Here’s the algorithm

import numpy as np
from numpy.linalg import norm

from random import normalvariate
from math import sqrt

def randomUnitVector(n):
    unnormalized = [normalvariate(0, 1) for _ in range(n)]
    theNorm = sqrt(sum(x * x for x in unnormalized))
    return [x / theNorm for x in unnormalized]

def svd_1d(A, epsilon=1e-10):
    ''' The one-dimensional SVD '''

    n, m = A.shape
    x = randomUnitVector(m)
    lastV = None
    currentV = x
    B = np.dot(A.T, A)

    iterations = 0
    while True:
        iterations += 1
        lastV = currentV
        currentV = np.dot(B, lastV)
        currentV = currentV / norm(currentV)

        if abs(np.dot(currentV, lastV)) &gt; 1 - epsilon:
            print(&quot;converged in {} iterations!&quot;.format(iterations))
            return currentV

We start with a random unit vector $ x$, and then loop computing $ x_{t+1} = Bx_t$, renormalizing at each step. The condition for stopping is that the magnitude of the dot product between $ x_t$ and $ x_{t+1}$ (since they’re unit vectors, this is the cosine of the angle between them) is very close to 1.

And using it on our movie ratings example:

if __name__ == &quot;__main__&quot;:
    movieRatings = np.array([
        [2, 5, 3],
        [1, 2, 1],
        [4, 1, 1],
        [3, 5, 2],
        [5, 3, 1],
        [4, 5, 5],
        [2, 4, 2],
        [2, 2, 5],
    ], dtype='float64')

    print(svd_1d(movieRatings))

With the result

converged in 6 iterations!
[-0.54184805 -0.67070993 -0.50650655]

Note that the sign of the vector may be different from numpy’s output because we start with a random vector to begin with.

The recursive step, getting from $ v_1$ to the entire SVD, is equally straightforward. Say you start with the matrix $ A$ and you compute $ v_1$. You can use $ v_1$ to compute $ u_1$ and $ \sigma_1(A)$. Then you want to ensure you’re ignoring all vectors in the span of $ v_1$ for your next greedy optimization, and to do this you can simply subtract the rank 1 component of $ A$ corresponding to $ v_1$. I.e., set $ A’ = A – \sigma_1(A) u_1 v_1^T$. Then it’s easy to see that $ \sigma_1(A’) = \sigma_2(A)$ and basically all the singular vectors shift indices by 1 when going from $ A$ to $ A’$. Then you repeat.

If that’s not clear enough, here’s the code.

def svd(A, epsilon=1e-10):
    n, m = A.shape
    svdSoFar = []

    for i in range(m):
        matrixFor1D = A.copy()

        for singularValue, u, v in svdSoFar[:i]:
            matrixFor1D -= singularValue * np.outer(u, v)

        v = svd_1d(matrixFor1D, epsilon=epsilon)  # next singular vector
        u_unnormalized = np.dot(A, v)
        sigma = norm(u_unnormalized)  # next singular value
        u = u_unnormalized / sigma

        svdSoFar.append((sigma, u, v))

    # transform it into matrices of the right shape
    singularValues, us, vs = [np.array(x) for x in zip(*svdSoFar)]

    return singularValues, us.T, vs

And we can run this on our movie rating matrix to get the following

&gt;&gt;&gt; theSVD = svd(movieRatings)
&gt;&gt;&gt; theSVD[0]
array([ 15.09626916,   4.30056855,   3.40701739])
&gt;&gt;&gt; theSVD[1]
array([[ 0.39458528, -0.23923093,  0.35446407],
       [ 0.15830233, -0.03054705,  0.15299815],
       [ 0.221552  ,  0.52085578, -0.39336072],
       [ 0.39692636,  0.08649568,  0.41052666],
       [ 0.34630257,  0.64128719, -0.07384286],
       [ 0.53347448, -0.19169154, -0.19948959],
       [ 0.31660465, -0.0610941 ,  0.30599629],
       [ 0.32840221, -0.45971273, -0.62353781]])
&gt;&gt;&gt; theSVD[2]
array([[ 0.54184805,  0.67071006,  0.50650638],
       [ 0.75151641, -0.11679644, -0.64929321],
       [-0.37632934,  0.73246611, -0.56733554]])

Checking this against our numpy output shows it’s within a reasonable level of precision (considering the power method took on the order of ten iterations!)

&gt;&gt;&gt; np.round(np.abs(npSVD[0]) - np.abs(theSVD[1]), decimals=5)
array([[ -0.00000000e+00,  -0.00000000e+00,   0.00000000e+00],
       [  0.00000000e+00,  -0.00000000e+00,   0.00000000e+00],
       [  0.00000000e+00,  -1.00000000e-05,   1.00000000e-05],
       [  0.00000000e+00,   0.00000000e+00,  -0.00000000e+00],
       [  0.00000000e+00,  -0.00000000e+00,   1.00000000e-05],
       [ -0.00000000e+00,   0.00000000e+00,  -0.00000000e+00],
       [  0.00000000e+00,  -0.00000000e+00,   0.00000000e+00],
       [ -0.00000000e+00,   1.00000000e-05,  -1.00000000e-05]])
&gt;&gt;&gt; np.round(np.abs(npSVD[2]) - np.abs(theSVD[2]), decimals=5)
array([[  0.00000000e+00,   0.00000000e+00,  -0.00000000e+00],
       [ -1.00000000e-05,  -1.00000000e-05,   1.00000000e-05],
       [  1.00000000e-05,   0.00000000e+00,  -1.00000000e-05]])
&gt;&gt;&gt; np.round(np.abs(npSVD[1]) - np.abs(theSVD[0]), decimals=5)
array([ 0.,  0., -0.])

So there we have it. We added an extra little bit to the svd function, an argument $ k$ which stops computing the svd after it reaches rank $ k$.

CNN stories

One interesting use of the SVD is in topic modeling. Topic modeling is the process of taking a bunch of documents (news stories, or emails, or movie scripts, whatever) and grouping them by topic, where the algorithm gets to choose what counts as a “topic.” Topic modeling is just the name that natural language processing folks use instead of clustering.

The SVD can help one model topics as follows. First you construct a matrix $ A$ called a document-term matrix whose rows correspond to words in some fixed dictionary and whose columns correspond to documents. The $ (i,j)$ entry of $ A$ contains the number of times word $ i$ shows up in document $ j$. Or, more precisely, some quantity derived from that count, like a normalized count. See this table on wikipedia for a list of options related to that. We’ll just pick one arbitrarily for use in this post.

The point isn’t how we normalize the data, but what the SVD of $ A = U \Sigma V^T$ means in this context. Recall that the domain of $ A$, as a linear map, is a vector space whose dimension is the number of stories. We think of the vectors in this space as documents, or rather as an “embedding” of the abstract concept of a document using the counts of how often each word shows up in a document as a proxy for the semantic meaning of the document. Likewise, the codomain is the space of all words, and each word is embedded by which documents it occurs in. If we compare this to the movie rating example, it’s the same thing: a movie is the vector of ratings it receives from people, and a person is the vector of ratings of various movies.

Say you take a rank 3 approximation to $ A$. Then you get three singular vectors $ v_1, v_2, v_3$ which form a basis for a subspace of words, i.e., the “idealized” words. These idealized words are your topics, and you can compute where a “new word” falls by looking at which documents it appears in (writing it as a vector in the domain) and saying its “topic” is the closest of the $ v_1, v_2, v_3$. The same process applies to new documents. You can use this to cluster existing documents as well.

The dataset we’ll use for this post is a relatively small corpus of a thousand CNN stories picked from 2012. Here’s an excerpt from one of them

$ cat data/cnn-stories/story479.txt
3 things to watch on Super Tuesday
Here are three things to watch for: Romney's big day. He's been the off-and-on frontrunner throughout the race, but a big Super Tuesday could begin an end game toward a sometimes hesitant base coalescing behind former Massachusetts Gov. Mitt Romney. Romney should win his home state of Massachusetts, neighboring Vermont and Virginia, ...

So let’s first build this document-term matrix, with the normalized values, and then we’ll compute it’s SVD and see what the topics look like.

Step 1 is cleaning the data. We used a bunch of routines from the nltk library that boils down to this loop:

    for filename, documentText in documentDict.items():
        tokens = tokenize(documentText)
        tagged_tokens = pos_tag(tokens)
        wnl = WordNetLemmatizer()
        stemmedTokens = [wnl.lemmatize(word, wordnetPos(tag)).lower()
                         for word, tag in tagged_tokens]

This turns the Super Tuesday story into a list of words (with repetition):

[&quot;thing&quot;, &quot;watch&quot;, &quot;three&quot;, &quot;thing&quot;, &quot;watch&quot;, &quot;big&quot;, ... ]

If you’ll notice the name Romney doesn’t show up in the list of words. I’m only keeping the words that show up in the top 100,000 most common English words, and then lemmatizing all of the words to their roots. It’s not a perfect data cleaning job, but it’s simple and good enough for our purposes.

Now we can create the document term matrix.

def makeDocumentTermMatrix(data):
    words = allWords(data)  # get the set of all unique words

    wordToIndex = dict((word, i) for i, word in enumerate(words))
    indexToWord = dict(enumerate(words))
    indexToDocument = dict(enumerate(data))

    matrix = np.zeros((len(words), len(data)))
    for docID, document in enumerate(data):
        docWords = Counter(document['words'])
        for word, count in docWords.items():
            matrix[wordToIndex[word], docID] = count

    return matrix, (indexToWord, indexToDocument)

This creates a matrix with the raw integer counts. But what we need is a normalized count. The idea is that a common word like “thing” shows up disproportionately more often than “election,” and we don’t want raw magnitude of a word count to outweigh its semantic contribution to the classification. This is the applied math part of the algorithm design. So what we’ll do (and this technique together with SVD is called latent semantic indexing) is normalize each entry so that it measures both the frequency of a term in a document and the relative frequency of a term compared to the global frequency of that term. There are many ways to do this, and we’ll just pick one. See the github repository if you’re interested.

So now lets compute a rank 10 decomposition and see how to cluster the results.

    data = load()
    matrix, (indexToWord, indexToDocument) = makeDocumentTermMatrix(data)
    matrix = normalize(matrix)
    sigma, U, V = svd(matrix, k=10)

This uses our svd, not numpy’s. Though numpy’s routine is much faster, it’s fun to see things work with code written from scratch. The result is too large to display here, but I can report the singular values.

&gt;&gt;&gt; sigma
array([ 42.85249098,  21.85641975,  19.15989197,  16.2403354 ,
        15.40456779,  14.3172779 ,  13.47860033,  13.23795002,
        12.98866537,  12.51307445])

Now we take our original inputs and project them onto the subspace spanned by the singular vectors. This is the part that represents each word (resp., document) in terms of the idealized words (resp., documents), the singular vectors. Then we can apply a simple k-means clustering algorithm to the result, and observe the resulting clusters as documents.

    projectedDocuments = np.dot(matrix.T, U)
    projectedWords = np.dot(matrix, V.T)

    documentCenters, documentClustering = cluster(projectedDocuments)
    wordCenters, wordClustering = cluster(projectedWords)

    wordClusters = [
        [indexToWord[i] for (i, x) in enumerate(wordClustering) if x == j]
        for j in range(len(set(wordClustering)))
    ]

    documentClusters = [
        [indexToDocument[i]['text']
         for (i, x) in enumerate(documentClustering) if x == j]
        for j in range(len(set(documentClustering)))
    ]

And now we can inspect individual clusters. Right off the bat we can tell the clusters aren’t quite right simply by looking at the sizes of each cluster.

&gt;&gt;&gt; Counter(wordClustering)
Counter({1: 9689, 2: 1051, 8: 680, 5: 557, 3: 321, 7: 225, 4: 174, 6: 124, 9: 123})
&gt;&gt;&gt; Counter(documentClustering)
Counter({7: 407, 6: 109, 0: 102, 5: 87, 9: 85, 2: 65, 8: 55, 4: 47, 3: 23, 1: 15})

What looks wrong to me is the size of the largest word cluster. If we could group words by topic, then this is saying there’s a topic with over nine thousand words associated with it! Inspecting it even closer, it includes words like “vegan,” “skunk,” and “pope.” On the other hand, some word clusters are spot on. Examine, for example, the fifth cluster which includes words very clearly associated with crime stories.

&gt;&gt;&gt; wordClusters[4]
['account', 'accuse', 'act', 'affiliate', 'allegation', 'allege', 'altercation', 'anything', 'apartment', 'arrest', 'arrive', 'assault', 'attorney', 'authority', 'bag', 'black', 'blood', 'boy', 'brother', 'bullet', 'candy', 'car', 'carry', 'case', 'charge', 'chief', 'child', 'claim', 'client', 'commit', 'community', 'contact', 'convenience', 'court', 'crime', 'criminal', 'cry', 'dead', 'deadly', 'death', 'defense', 'department', 'describe', 'detail', 'determine', 'dispatcher', 'district', 'document', 'enforcement', 'evidence', 'extremely', 'family', 'father', 'fear', 'fiancee', 'file', 'five', 'foot', 'friend', 'front', 'gate', 'girl', 'girlfriend', 'grand', 'ground', 'guilty', 'gun', 'gunman', 'gunshot', 'hand', 'happen', 'harm', 'head', 'hear', 'heard', 'hoodie', 'hour', 'house', 'identify', 'immediately', 'incident', 'information', 'injury', 'investigate', 'investigation', 'investigator', 'involve', 'judge', 'jury', 'justice', 'kid', 'killing', 'lawyer', 'legal', 'letter', 'life', 'local', 'man', 'men', 'mile', 'morning', 'mother', 'murder', 'near', 'nearby', 'neighbor', 'newspaper', 'night', 'nothing', 'office', 'officer', 'online', 'outside', 'parent', 'person', 'phone', 'police', 'post', 'prison', 'profile', 'prosecute', 'prosecution', 'prosecutor', 'pull', 'racial', 'racist', 'release', 'responsible', 'return', 'review', 'role', 'saw', 'scene', 'school', 'scream', 'search', 'sentence', 'serve', 'several', 'shoot', 'shooter', 'shooting', 'shot', 'slur', 'someone', 'son', 'sound', 'spark', 'speak', 'staff', 'stand', 'store', 'story', 'student', 'surveillance', 'suspect', 'suspicious', 'tape', 'teacher', 'teen', 'teenager', 'told', 'tragedy', 'trial', 'vehicle', 'victim', 'video', 'walk', 'watch', 'wear', 'whether', 'white', 'witness', 'young']

As sad as it makes me to see that ‘black’ and ‘slur’ and ‘racial’ appear in this category, it’s a reminder that naively using the output of a machine learning algorithm can perpetuate racism.

Here’s another interesting cluster corresponding to economic words:

&gt;&gt;&gt; wordClusters[6]
['agreement', 'aide', 'analyst', 'approval', 'approve', 'austerity', 'average', 'bailout', 'beneficiary', 'benefit', 'bill', 'billion', 'break', 'broadband', 'budget', 'class', 'combine', 'committee', 'compromise', 'conference', 'congressional', 'contribution', 'core', 'cost', 'currently', 'cut', 'deal', 'debt', 'defender', 'deficit', 'doc', 'drop', 'economic', 'economy', 'employee', 'employer', 'erode', 'eurozone', 'expire', 'extend', 'extension', 'fee', 'finance', 'fiscal', 'fix', 'fully', 'fund', 'funding', 'game', 'generally', 'gleefully', 'growth', 'hamper', 'highlight', 'hike', 'hire', 'holiday', 'increase', 'indifferent', 'insistence', 'insurance', 'job', 'juncture', 'latter', 'legislation', 'loser', 'low', 'lower', 'majority', 'maximum', 'measure', 'middle', 'negotiation', 'offset', 'oppose', 'package', 'pass', 'patient', 'pay', 'payment', 'payroll', 'pension', 'plight', 'portray', 'priority', 'proposal', 'provision', 'rate', 'recession', 'recovery', 'reduce', 'reduction', 'reluctance', 'repercussion', 'rest', 'revenue', 'rich', 'roughly', 'sale', 'saving', 'scientist', 'separate', 'sharp', 'showdown', 'sign', 'specialist', 'spectrum', 'spending', 'strength', 'tax', 'tea', 'tentative', 'term', 'test', 'top', 'trillion', 'turnaround', 'unemployed', 'unemployment', 'union', 'wage', 'welfare', 'worker', 'worth']

One can also inspect the stories, though the clusters are harder to print out here. Interestingly the first cluster of documents are stories exclusively about Trayvon Martin. The second cluster is mostly international military conflicts. The third cluster also appears to be about international conflict, but what distinguishes it from the first cluster is that every story in the second cluster discusses Syria.

&gt;&gt;&gt; len([x for x in documentClusters[1] if 'Syria' in x]) / len(documentClusters[1])
0.05555555555555555
&gt;&gt;&gt; len([x for x in documentClusters[2] if 'Syria' in x]) / len(documentClusters[2])
1.0

Anyway, you can explore the data more at your leisure (and tinker with the parameters to improve it!).

Issues with the power method

Though I mentioned that the power method isn’t an industry strength algorithm I didn’t say why. Let’s revisit that before we finish. The problem is that the convergence rate of even the 1-dimensional problem depends on the ratio of the first and second singular values, $ \sigma_1 / \sigma_2$. If that ratio is very close to 1, then the convergence will take a long time and need many many matrix-vector multiplications.

One way to alleviate that is to do the trick where, to compute a large power of a matrix, you iteratively square $ B$. But that requires computing a matrix square (instead of a bunch of matrix-vector products), and that requires a lot of time and memory if the matrix isn’t sparse. When the matrix is sparse, you can actually do the power method quite quickly, from what I’ve heard and read.

But nevertheless, the industry standard methods involve computing a particular matrix decomposition that is not only faster than the power method, but also numerically stable. That means that the algorithm’s runtime and accuracy doesn’t depend on slight changes in the entries of the input matrix. Indeed, you can have two matrices where $ \sigma_1 / \sigma_2$ is very close to 1, but changing a single entry will make that ratio much larger. The power method depends on this, so it’s not numerically stable. But the industry standard technique is not. This technique involves something called Householder reflections. So while the power method was great for a proof of concept, there’s much more work to do if you want true SVD power.

Until next time!