Searching for RH Counterexamples — Exploring Data

We’re ironically searching for counterexamples to the Riemann Hypothesis.

  1. Setting up Pytest
  2. Adding a Database
  3. Search Strategies
  4. Unbounded integers
  5. Deploying with Docker
  6. Performance Profiling
  7. Scaling up
  8. Productionizing

In the last article we added a menagerie of “production readiness” features like continuous integration tooling (automating test running and static analysis), alerting, and a simple deployment automation. Then I let it loose on AWS, got extremely busy with buying a house, forgot about this program for a few weeks (no alerts means it worked flawlessly!), and then saw my AWS bill.

So I copied the database off AWS using pg_dump (piped to gzip), terminated the instances, and inspected the results. A copy of the database is here. You may need git-lfs to clone it. If I wanted to start it back up again, I could spin them back up, and use gunzip | psql to restore the database, and it would start back up from where it left off. A nice benefit of all the software engineering work done thus far.

This article will summarize some of the data, show plots, and try out some exploratory data analysis techniques.

Summary

We stopped the search mid-way through the set of numbers with 136 prime divisors.

The largest number processed was

1255923956750926940807079376257388805204
00410625719434151527143279285143764977392
49474111379646103102793414829651500824447
17178682617437033476033026987651806835743
3694669721205424205654368862231754214894
07691711699791787732382878164959602478352
11435434547040000

Which in factored form is the product of these terms

  2^8   3^7   5^4   7^4  11^3  13^3  17^2  19^2  23^2  29^2
 31^2  37^2  41^2  43^1  47^1  53^1  59^1  61^1  67^1  71^1
 73^1  79^1  83^1  89^1  97^1 101^1 103^1 107^1 109^1 113^1
127^1 131^1 137^1 139^1 149^1 151^1 157^1 163^1 167^1 173^1
179^1 181^1 191^1 193^1 197^1 199^1 211^1 223^1 227^1 229^1
233^1 239^1 241^1 251^1 257^1 263^1 269^1 271^1 277^1 281^1
283^1 293^1 307^1 311^1 313^1 317^1 331^1 337^1 347^1 349^1
353^1 359^1 367^1 373^1 379^1 383^1 389^1 397^1 401^1 409^1
419^1 421^1 431^1 433^1 439^1 443^1 449^1 457^1 461^1 463^1
467^1 479^1 487^1 491^1 499^1 503^1 509^1 521^1 523^1 541^1
547^1 557^1 563^1 569^1 571^1 577^1

The best witness—the number with the largest witness value—was

38824169178385494306912668979787078930475
9208283469279319659854547822438432284497
11994812030251439907246255647505123032869
03750131483244222351596015366602420554736
87070007801035106854341150889235475446938
52188272225341139870856016797627204990720000

which has witness value 1.7707954880001586, which is still significantly smaller than the needed 1.782 to disprove RH.

The factored form of the best witness is

 2^11   3^7   5^4   7^3  11^3  13^2  17^2  19^2  23^2  29^2 
 31^2  37^1  41^1  43^1  47^1  53^1  59^1  61^1  67^1  71^1 
 73^1  79^1  83^1  89^1  97^1 101^1 103^1 107^1 109^1 113^1 
127^1 131^1 137^1 139^1 149^1 151^1 157^1 163^1 167^1 173^1 
179^1 181^1 191^1 193^1 197^1 199^1 211^1 223^1 227^1 229^1 
233^1 239^1 241^1 251^1 257^1 263^1 269^1 271^1 277^1 281^1 
283^1 293^1 307^1 311^1 313^1 317^1 331^1 337^1 347^1 349^1 
353^1 359^1 367^1 373^1 379^1 383^1 389^1 397^1 401^1 409^1 
419^1 421^1 431^1 433^1 439^1 443^1 449^1 457^1 461^1 463^1 
467^1 479^1 487^1 491^1 499^1 503^1 509^1 521^1 523^1 541^1 
547^1 557^1 563^1 

The average search block took 4m15s to compute, while the max took 7m7s and the min took 36s.

The search ran for about 55 days (hiccups included), starting at 2021-03-05 05:47:53 and stopping at 2021-04-28 15:06:25. The total AWS bill—including development, and periods where the application was broken but the instances still running, and including instances I wasn’t using but forgot to turn off—was $380.25. When the application was running at its peak, the bill worked out to about $100/month, though I think I could get it much lower by deploying fewer instances, after we made the performance optimizations that reduced the need for resource-heavy instances. There is also the possibility of using something that integrates more tightly with AWS, such as serverless jobs for the cleanup, generate, and process worker jobs.

Plots

When in doubt, plot it out. I started by writing an export function to get the data into a simpler CSV, which for each $ n$ only stored $ \log(n)$ and the witness value.

I did this once for the final computation results. I’ll call this the “small” database because it only contains the largest witness value in each block. I did it again for an earlier version of the database before we introduced optimizations (I’ll call this the “large” database), which had all witness values for all superabundant numbers processed up to 80 prime factors.. The small database was only a few dozen megabytes in size, and the large database was ~40 GiB, so I had to use postgres cursors to avoid loading the large database into memory. Moreover, then generated CSV was about 8 GiB in size, and so it required a few extra steps to sort it, and get it into a format that could be plotted in a reasonable amount of time.

First, using GNU sort to sort the file by the first column, $ \log(n)$

sort -t , -n -k 1 divisor_sums.csv -o divisor_sums_sorted.csv

Then, I needed to do some simple operations on massive CSV files, including computing a cumulative max, and filtering down to a subset of rows that are sufficient for plotting. After trying to use pandas and vaex, I realized that the old awk command line tool would be great at this job. So I wrote a simple awk script to process the data, and compute data used for the cumulative max witness value plots below.

Then finally we can use vaex to create two plots. The first is a heatmap of witness value counts. The second is a plot of the cumulative max witness value. For the large database:

Witness value heatmap for the large database
The cumulative maximum witness value for the large database.

And for the small database

A heatmap for the witness values for the small database
The cumulative maximum witness value for the small database.

Note, the two ridges disagree slightly (the large database shows a longer flat line than the small database for the same range), because of the way that the superabundant enumeration doesn’t go in increasing order of $ n$. So larger witness values in the range 400-500 are found later.

Estimating the max witness value growth rate

The next obvious question is whether we can fit the curves above to provide an estimate of how far we might have to look to find the first witness value that exceeds the desired 1.782 threshold. Of course, this will obviously depend on the appropriateness of the underlying model.

A simple first guess would be split between two options: the real data is asymptotic like $ a + b / x$ approaching some number less than 1.782 (and hence this approach cannot disprove RH), or the real data grows slowly (perhaps doubly-logarithmic) like $ a + b \log \log x$, but eventually surpasses 1.782 (and RH is false). For both cases, we can use scipy’s curve fitting routine as in this pull request.

For the large database (roughly using log n < 400 since that’s when the curve flatlines due to the enumeration order), we get a reciprocal fit of

$ \displaystyle f(x) \approx 1.77579122 – 2.72527824 / x$

and a logarithmic fit of

$ \displaystyle f(x) \approx 1.65074314 + 0.06642373 \log(\log(x))$

The fit of the large database to a + b/x. Note the asymptote of 1.7757 suggests this will not disprove RH.
The fit of the large database to a + b log log x. If this is accurate, we would find the counterexample around log(n) = 1359.

The estimated asymptote is around 1.7757 in the first case, and the second case estimates we’d find an RH counterexample at around $ log(n) = 1359$.

For the small database of only sufficiently large witness values, this time going up to about $ log(n) \approx 575$, the asymptotic approximation is

$ \displaystyle 1.77481154 -2.31226382 / x$

And the logarithmic approximation is

$ \displaystyle 1.70825262 + 0.03390312 \log(\log(x))$

The reciprocal approximation of the small database with asymptote 1.77481154
The logarithmic approximation of the small database with RH counterexample estimate at log(n) = 6663

Now the asymptote is slightly lower, at 1.7748, and the logarithmic model approximates the counterexample can be found at approximately $ \log(n) = 6663$.

Both of the logarithmic approximations suggest that if we want to find an RH counterexample, we would need to look at numbers with thousands of prime factors. The first estimate puts a counterexample at about $ 2^{1960}$, the second at $ 2^{9612}$, so let’s say between 1k and 10k prime factors.

Luckily, we can actually jump forward in the superabundant enumeration to exactly the set of candidates with $ m$ prime factors. So it might make sense to jump ahead to, say, 5k prime factors and search in that region. However, the size of a level set of the superabundant enumeration still grows exponentially in $ m$. Perhaps we should (heuristically) narrow down the search space by looking for patterns in the distribution of prime factors for the best witness values we’ve found thus far. Perhaps the values of $ n$ with the best witness values tend to have a certain concentration of prime factors.

Exploring prime factorizations

At first, my thought was to take the largest witness values, look at their prime factorizations, and try to see a pattern when compared to smaller witness values. However, other than the obvious fact that the larger witness values correspond to larger numbers (more and larger prime factors), I didn’t see an obvious pattern from squinting at plots.

To go in a completely different direction, I wanted to try out the UMAP software package, a very nice and mathematically sophisticated for high dimensional data visualization. It’s properly termed a dimensionality reduction technique, meaning it takes as input a high-dimensional set of data, and produces as output a low-dimensional embedding of that data that tries to maintain the same shape as the input, where “shape” is in the sense of a certain Riemannian metric inferred from the high dimensional data. If there is structure among the prime factorizations, then UMAP should plot a pretty picture, and perhaps that will suggest some clearer approach.

To apply this to the RH witness value dataset, we can take each pair $ (n, \sigma(n)/(n \log \log n))$, and associate that with a new (high dimensional) data point corresponding to the witness value paired with the number’s prime factorization

$ \displaystyle (\sigma(n)/(n \log \log n), k_1, k_2, \dots, k_d)$,

where $ n = 2^{k_1} 3^{k_2} 5^{k_3} \dots p_d^{k_d}$, with zero-exponents included so that all points have the same dimension. This pull request adds the ability to factorize and export the witness values to a CSV file as specified, and this pull request adds the CSV data (using git-lfs), along with the script to run UMAP, the resulting plots shown below, and the saved embeddings as .npy files (numpy arrays).

When we do nothing special to the data and run it through UMAP we see this plot.

UMAP plotted on the raw prime factorization and witness value dataset.

It looks cool, but if you stare at it for long enough (and if you zoom in when you generate the plot yourself in matplotlib) you can convince yourself that it’s not finding much useful structure. The red dots dominate (lower witness values) and the blue dots are kind of spread haphazardly throughout the red regions. The “ridges” along the chart are probably due to how the superabundant enumeration skips lots of numbers, and that’s why it thins out on one end: the thinning out corresponds to fewer numbers processed that are that large since the enumeration is not uniform.

It also seemed like there is too much data. The plot above has some 80k points on it. After filtering down to just those points whose witness values are bigger than 1.769, we get a more manageable plot.

Witness values and prime factors processed with UMAP, where the witness value is at least 1.769.

This is a bit more reasonable. You can see a stripe of blue dots going through the middle of the plot.

Before figuring out how that blue ridge might relate to the prime factor patterns, let’s take this a few steps further. Typically in machine learning contexts, it helps to normalize your data, i.e., to transform each input dimension into a standard Z-score with respect to the set of values seen in that dimension, subtracting the mean and dividing by the standard deviation. Since the witness values are so close to each other, they’re a good candidate for such normalization. Here’s what UMAP plots when we normalize the witness value column only.

UMAP applied to the (normalized) witness values and prime factorizations. Applied to all witness values.

Now this is a bit more interesting! Here the colormap on the right is in units of standard deviation of witness values. You can see a definite bluest region, and it appears that the data is organized into long brushstrokes, where the witness values increase as you move from one end of the stroke to the other. At worst, this suggests that the dataset has structure that a learning algorithm could discover.

Going even one step further, what if we normalize all the columns? Well, it’s not as interesting.

UMAP when normalizing all columns, not just the witness value.

If you zoom in, you can see that the same sort of “brushstroke” idea is occurring here too, with blue on one end and red on the other. It’s just harder to see.

The previous image, zoomed in around a cluster of data

We would like to study the prettiest picture and see if we can determine what pattern of prime numbers the blue region has, if any. The embedding files are stored on github, and I put up (one version of) the UMAP visualization as an interactive plot via this pull request.

I’ve been sitting on this draft for a while, and while this article didn’t make a ton of headway, the pictures will have to do while I’m still dealing with my new home purchase.

Some ideas for next steps:

  • Squint harder at the distributions of primes for the largest witness values in comparison to the rest.
  • See if a machine learning algorithm can regress witness values based on their prime factorizations (and any other useful features I can derive). Study the resulting hypothesis to determine which features are the most important. Use that to refine the search strategy.
  • Try searching randomly in the superabundant enumeration around 1k and 10k prime factors, and see if the best witness values found there match the log-log regression.
  • Since witness values above a given threshold seem to be quite common, and because the UMAP visualization shows some possible “locality” structure for larger witness values, it suggests if there is a counterexample to RH then there are probably many. So a local search method (e.g., local neighborhood search/discrete gradient ascent with random restarts) might allow us to get a better sense for whether we are on the right track.

Until next time!

Searching for RH Counterexamples — Scaling Up

We’re ironically searching for counterexamples to the Riemann Hypothesis.

  1. Setting up Pytest
  2. Adding a Database
  3. Search Strategies
  4. Unbounded integers
  5. Deploying with Docker
  6. Performance Profiling

Last time we made the audacious choice to remove primary keys from the RiemannDivisorSums table for performance reasons. To help with that, we will do two things in this post

  • Reduce the storage footprint of the whole application (it was 60 GiB when it crashed, and we got up to 84 prime factors).
  • Refactor the application into a worker architecture.

The first one is straightforward, but uses a possibly new idea to the mathematician, and the second is a relatively major rearchitecture.

Hashing a search block

Instead of storing every single Riemann divisor sum, we can just store the ones that are interesting, that is, the ones that are larger than some threshold—in our case, 1.767, which had just under a thousand examples in the last post.

That raises a problem. We want to be able to say that we checked all examples up to some limit. We’ve been saying “up to all numbers having at most K prime factors” because that’s how the superabundant search strategy enumerates the candidates. If we don’t store all the witness values, how can we prove to a skeptical observer that we checked what we said we checked?

One approach is to instead store a “summary string” derived from the full set of witness values. This “summary string” should be deterministically reproducible, so that if someone has the metadata about the block of numbers, they can recompute the summary and compare it with our summary.

A simple example summary might be the string-concatenation of all the witness values one after another, like 1.4323,1.5678,0.8792. But that still takes up a lot of space (each block had 250,000 different witness values). It would be better if we could find a summary that had a fixed size, regardless of how big the input is. Taking a cue from computer science, a hash function does exactly that. Hash functions aren’t perfect, they can have collisions, but the collisions are unlikely enough that, if you tested a hundred random blocks and all your hashes agreed with all of my hashes, you would be confident I checked everything the same as you. That gives you confidence that the rest of my blocks (say, a million of them) were computed correctly.

The hash function we’ll use is called sha256, and we add it in this pull request. Now the database application shouldn’t need a ton of disk space to run. (We’ll confirm this later in the article)

For more background and related topics around hash functions, see Load Balancing and the Power of Hashing and Hashing to Estimate the Size of a Stream.

Worker architecture

Next we want to rearchitect the application to enable two things: better protection against the possibility of duplicating/skipping divisor sum computations, and allowing us to scale up the rate of computation by adding additional computers to the mix. This pull request achieves the goal, but note that it’s a large change, so let’s cover the broad ideas, then zoom in on a few details, and finally discuss the PR’s structure as a whole from the perspective of software engineering.

We start by adding a “state” field to a search block. The state can be one of NOT_STARTED, IN_PROGRESS, FINISHED, FAILED. Then one worker job (read, container) will be responsible for computing new blocks in the NOT_STARTED state, and a group of workers jobs will continually “claim” an eligible block, compute the divisor sums, and then mark it as finished and insert the interesting witness values it found.

This suggests a drastic change to the database interface, as shown in this commit, to align with the new “claim/finish” workflow. We replace the existing functions with insert_search_blocks, claim_next_search_block, and finish_search_block. The first two operate only on the SearchMetadata table, while the third couples together the changes to both tables, by marking a block as finished and inserting the relevant witness values. We’ll see how we ensure these two updates occur atomically in a moment. Also, because of the new coupling of the two tables, I merged the two database interfaces into one.

We need two safety measures to make this work. First, we need to ensure that we don’t accidentally generate multiple duplicate search blocks. We do this by adding a uniqueness constraint on the bounds of a search block at the database level. If a client calls insert_search_blocks with something that’s already in the database, the database itself will reject it, and the client will be forced to catch the failure and recover.

Second, we need to ensure that two workers don’t claim the same search block. This involves a bit of database wizardry. I had to do a bit of research to make it work, and it took a few attempts. The gist of the problem is that if you want to claim a search block, you need to do two queries. First, you need to look up the oldest eligible search block that you want to claim. Then, you need to mark it as claimed. But if you have multiple workers accessing the database simultaneously, you can get this order of operations

  1. Worker 1 runs lookup query, gets search block 7
  2. Worker 2 runs lookup query, also gets search block 7
  3. Worker 1 runs update query, marks search block 7 as claimed
  4. Worker 2 runs update query, also marks search block 7 as claimed.

This can even happen if there’s only “one” query, and the lookup step is a subquery. After reading a bit about PostgreSQL’s transaction isolation guarantees, I learned that you can “lock” the rows read by the subquery until the update step is complete by adding FOR UPDATE to the subquery. This commit has the full query, but it looks something like this

UPDATE SearchMetadata
SET state = 'IN_PROGRESS'
FROM (
  SELECT starting_search_index
  FROM SearchMetadata
  WHERE state = 'NOT_STARTED'
  ORDER BY creation_time ASC
  LIMIT 1
  FOR UPDATE         <---- key clause!
) as m
WHERE
  starting_search_index = m.starting_search_index;

I also added some special tests (that use the finished worker jobs) that will specifically fail when this FOR UPDATE clause is removed, to confirm it fixes the behavior. This is particularly important because it’s hard to test database queries that protect against race conditions. Plus, I tried other approaches and got it wrong, which proved the value of having such tests.

Finally, the finish_search_block function needs to ensure that the update of the SearchMetadata and RiemannDivisorSums tables happen atomically. This is done in this commit by leveraging the concept of a database transaction. In a transaction, all of the queries between BEGIN and COMMIT happen at once or not at all, e.g., in the case that a later query fails. The “not at all” case is called a rollback.

Thankfully, the psycopg2 library we’re using uses transactions by default, and requires us to call connection.commit to make any query persist. So we are already using transactions and get the guarantee without extra work.

Next, we needed to update the SearchStrategy interface to separate the task of generating new search blocks and processing blocks, since these will be done by separate workers. This commit updates the interface, this commit the tests, and this commit the implementation.

Finally, once all the rearchitecting and re-testing is done, we ditched our old populate_database entry script, and replaced it with a worker script for generating new search blocks, and one for claiming and processing blocks. These have the same general structure: infinitely loop, use the database and search strategy interfaces as expected, and then exponentially back off when failures occur, eventually quitting if there are too many repeated failures. In the case of the generator worker, we also have configuration around how many new blocks to create, what minimum threshold to trigger doing work, and a delay between checks (since the workers will be much slower than the generator).

Ship it!

Now we’re ready to launch it, and this time since we have improved our memory issues, we can use an AWS instance with smaller memory requirements, but launch four of them to allow one for each container. After a few of the following steps, this worked out just fine:

  • Configure an AWS security group (which limits which IP addresses EC2 instances can communicate with) so that Postgres communication was allowed between all the launched instances. This was made easy by the fact that you can configure a security group once so that it allows communication to and from any other instances with the same security group (in addition to my laptop’s IP).
  • Keep track of the ip addresses of each of the instances I launched, and make sure that the instance with a 60 GiB disk is the instance I put the database on.
  • Manually install docker and launch the right container on each one, and point their PGHOST variables to the address of the database instance.

I will improve this workflow in the next article, but for now I am letting it run for a few days and observing that it works. The generator job adds 100 new search blocks any time there are less than 100 eligible blocks, and this query shows they are getting worked on properly.

divisor=# select state, count(*) from searchmetadata group by state;
    state    | count 
-------------+-------
 NOT_STARTED |   129
 FINISHED    |   367
 IN_PROGRESS |     4

As I was stopping and restarting jobs, two search blocks got stuck in the “in_progress” state, as you can see from the lagging-behind start time.

divisor=# select start_time, starting_search_index, ending_search_index from searchmetadata where state='IN_PROGRESS' order by start_time asc;
         start_time         | starting_search_index | ending_search_index 
----------------------------+-----------------------+---------------------
 2021-02-09 04:46:13.616085 | 64,433492             | 64,683491    <-- stuck!
 2021-02-09 04:48:08.554847 | 65,191862             | 65,441861    <-- stuck!
 2021-02-09 14:22:08.331754 | 78,9803652            | 78,10053651
 2021-02-09 14:22:44.36657  | 78,10053652           | 78,10303651
(4 rows)

This suggests I should create a new job for cleaning up “stale” IN_PROGRESS blocks and marking them as failed. I’ll do this in the next article, and it won’t hurt us to leave some blocks in the transient state, because once the cleanup job is running it will make those blocks eligible to be worked on again, and the worker’s claim the earliest block first.

I also noticed an issue where I forgot a commit statement, which didn’t show up in testing, and I can’t quite figure out how to set up a test that requires this commit statement to be present. Nevertheless, after I noticed the problem, I patched it, stopped the containers, ran git pull on each instance, rebuilt the containers, and started them again, and it continued along as if nothing was wrong.

Since the search application is running well now for long periods of time, I’ll let it run for a week or two (or until something breaks), and return to it in the next article to see what bigger witness values we find. In the mean time, I’d like to discuss how I organized all of the changes that went into that massive pull request.

How to organize a big pull request

The pull request to change the application architecture is quite substantial, and I had a lot of cleanup I wanted to do along the way.

The basic pattern of the PR, which was repeated a few times throughout, was to split each unit of change into three parts: update the interface, update the tests that use the interface, and update the implementation. As an example, one commit updates the SearchStrategy interface, one the tests, and one the implementation.

Doing it this way helps in a few ways. First, I think a lot about how the interface should work, and I prove that it feels right by writing tests first. That way, I don’t get bogged down in the implementation details when thinking about how it will be used. Likewise, when doing this for the database change, after updating the interface and tests, I first updated the InMemoryDatabase implementation, because it was simpler, and having this made me confident the interface could be implemented decently, and allowed me to tweak the interface early, before turning to the harder problem of figuring out PostgreSQL FOR UPDATE stuff.

Much like the proof of a mathematical theorem, the final commits hide the work that went into this, and commit messages, code comments, and PR description provide a deeper explanation. Typically what I do is make changes, and then use git’s staging area concept to pull out different sub-changes within a file into a single commit. This blog post about “using git well” covers this in more detail. But this, and git’s rebase and amend features, allowed me to edit older commits so that the final pull request lays out the commits in a logical order.

It also allows me to split off the cleanup parts as best as possible, such as this commit to rename SearchState to SearchIndex (after I added the new “state” field). I made the commit, had some places I missed and fixed later, extracted them into their own commit, and rebased and squashed them together to unify the change. Keeping each commit as close to an atomic thought as possible (“add this test” or “implement this method”) enables easy squashing and reordering.

Though nobody is reviewing my code now (except you, dear reader, after the fact), a primary benefit of all this cleanup is that the code is much easier to review. The pull request as a whole is a feature, each commit is a smaller, but comprehensible piece of that bigger feature, and the commits are laid out in such a way that if you browse the commits in order, you get a clear picture of how the whole feature was assembled.

If you find yourself doing mathematical work in the context of software, you should expect to spend a lot of time reviewing code and having your code reviewed. The extra effort you put into making that process easier pays off by producing better feedback, uncovering more bugs, and reducing total review time. Though it might be considered a soft skill, smooth code reviews are a critical part of a well-functioning software organization.

Searching for RH Counterexamples — Performance Profiling

We’re ironically searching for counterexamples to the Riemann Hypothesis.

  1. Setting up Pytest
  2. Adding a Database
  3. Search Strategies
  4. Unbounded integers
  5. Deploying with Docker

In the last article we ran into some performance issues with our deployed docker application. In this article we’ll dig in to see what happened, fix the problem, run into another problem, fix it, and run the search until we rule out RH witness-value-based counterexamples among all numbers with fewer than 85 prime factors.

When debugging any issue, there are some straightforward steps to follow.

  1. Gather information to determine where the problem is.
  2. Narrow down the source of the problem.
  3. Reproduce the problem in an isolated environment (on your local machine or a separate EC2 instance).
  4. Fix the problem.

So far what I know is that the search ran for days on EC2 with docker, and didn’t make significantly more progress than when I ran it on my local machine for a few hours.

Gathering information

Gathering information first is an important step that’s easy to skip when you think you know the problem. In my experience, spending an extra 5-10 minutes just looking around can save hours of work you might spend fixing the wrong problem.

So we know the application is slow. But there are many different kinds of slow. We could be using up all the CPU, running low on free RAM, throttled by network speeds, and more. To narrow down which of these might be the problem, we can look at the server’s resource usage.

The CPU utilization EC2 dashboard below shows that after just a few hours of running the application, the average CPU utilization drops to 5-10% and stays at that level. Running docker stats shows that the search container has over 5 GiB of unused RAM. df -h shows that the server has more than 60% of its disk space free.

The fact that the CPU spikes like this suggests that the program is doing its work, just with gaps in between the real work, and some sort of waiting consuming the rest of the time.

Another angle we can look at is the timestamps recorded in the SearchMetadata table.

divisor=# select * from searchmetadata order by start_time desc limit 9;
         start_time         |          end_time          |       search_state_type       | starting_search_state | ending_search_state 
----------------------------+----------------------------+-------------------------------+-----------------------+---------------------
 2021-01-01 15:40:42.374536 | 2021-01-01 16:15:34.838774 | SuperabundantEnumerationIndex | 71,1696047            | 71,1946047
 2021-01-01 15:06:13.947216 | 2021-01-01 15:40:42.313078 | SuperabundantEnumerationIndex | 71,1446047            | 71,1696047
 2021-01-01 14:32:14.692185 | 2021-01-01 15:06:13.880209 | SuperabundantEnumerationIndex | 71,1196047            | 71,1446047
 2021-01-01 13:57:39.725843 | 2021-01-01 14:32:14.635433 | SuperabundantEnumerationIndex | 71,946047             | 71,1196047
 2021-01-01 13:25:53.376243 | 2021-01-01 13:57:39.615891 | SuperabundantEnumerationIndex | 71,696047             | 71,946047
 2021-01-01 12:59:14.58666  | 2021-01-01 13:25:53.331857 | SuperabundantEnumerationIndex | 71,446047             | 71,696047
 2021-01-01 12:43:08.503441 | 2021-01-01 12:59:14.541995 | SuperabundantEnumerationIndex | 71,196047             | 71,446047
 2021-01-01 12:27:49.698012 | 2021-01-01 12:43:08.450301 | SuperabundantEnumerationIndex | 70,4034015            | 71,196047
 2021-01-01 12:14:44.970486 | 2021-01-01 12:27:49.625687 | SuperabundantEnumerationIndex | 70,3784015            | 70,4034015

As you can see, computing a single block of divisor sums takes over a half hour in many cases! This is nice, because we can isolate the computation of a single block on our local machine and time it.

Narrowing Down

Generally, since we ran this application on a local machine just fine for longer than we ran it in docker on EC2, I would think the culprit is related to the new thing that was introduced: docker and/or EC2. My local machine is a Mac, and the EC2 machine was Ubuntu linux, so there could be a difference there. It’s also strange that the system only started to slow down after about two hours, instead of being slow the whole time. That suggests there is something wrong with scaling, i.e., what happens as the application starts to grow in its resource usage.

Just to rule out the possibility that it’s a problem with computing and storing large blocks, let’s re-test the block with starting index 71,196047 and ending index 71,446047, which took approximated 16 minutes on EC2. These three lines are between the start/end timestamps in the table. Only the second line does substantive work.

start_state = search_strategy.search_state()
db.upsert(search_strategy.next_batch(batch_size))
end_state = search_strategy.search_state()

First we’ll just run the next_batch method, to remove the database upsert from consideration. We’ll also do it in a vanilla Python script, to remove the possibility that docker is introducing inefficiency, which is the most likely culprit, since docker is the new part from the last article. This commit has the timing test and the result shows that on average the block takes two minutes on my local machine.

Running the same code in a docker container on EC2 has the same result, which I verified by copying the divisorsearch.Dockerfile to a new dockerfile and replacing the entrypoint command with

ENTRYPOINT ["python3", "-u", "-m", "timing.ec2_timing_test"]

Then running (on a fresh EC2 instance with docker installed and the repo cloned)

docker build -t timing -f timing.Dockerfile .
docker run -dit --name timing --memory="15G" --env PGHOST="$PGHOST" timing:latest
docker logs -f timing

Once it finishes, I see it takes on average 40 seconds to compute the block. So any prior belief that the divisor computation might be the bottleneck are now gone.

Now let’s try the call to db.upsert, which builds the query and sends it over the network to the database container. Testing that in isolation—by computing the block first and then timing the upsert with this commit —shows it takes about 8 seconds to update an empty database with this block.

Both of these experiments were run on EC2 in docker, so we’ve narrowed down the problem enough to say that it only happens when the system has been running for that two hour window. My best guess is something to do with having a large database, or something to do with container-to-container networking transfer rates (the docker overhead). The next step in narrowing down the problem is to set up the scenario and run performance profiling tools on the system in situ.

I spin back up an r5.large. Then I run the deploy script and wait for two hours. It started slowing down after about 1h45m of runtime. At this point I stopped the divisorsearch container and ran the timing test container. And indeed, the upsert step has a strangely slow pattern (the numbers are in seconds):

Running sample 0
55.63926291465759
Running sample 1
61.28182792663574
Running sample 2
245.36470413208008  # 4 minutes
Running sample 3
1683.663686990738   # 28 minutes

At this point I killed the timing test. The initial few writes, while not great, are not as concerning as the massive degradation in performance over four writes. At this point I’m convinced that the database is the problem. So I read a lot about Postgres performance tuning (e.g. these docs and this blog post), which I had never done before.

It appears that the way Postgres inserts work is by writing to a “write cache,” and then later a background process copies the content of the write cache to disk. This makes sense because disk writes are slow. But if the write cache is full, then Postgres will wait until the write cache gets emptied before it can continue. This seems likely here: the first few writes are fast, and then when the cache fills up later writes take eons.

I also learned that the PRIMARY KEY part of our Postgres schema incurs a penalty to write performance, because in order to enforce the uniqueness Postgres needs to maintain a data structure and update it on every write. I can imagine that, because an mpz (unbounded integer) is our primary key, that data structure might be unprepared to handle such large keys. This might explain why these writes are taking so long in the first place, given that each write itself is relatively small (~2 MiB). In our case we can probably get by without a primary key on this table, and instead put any uniqueness constraints needed on the search metadata table.

So let’s change one of these and see if it fixes the problem. First we can drop the primary key constraint, which we can do in situ by running the query

alter table riemanndivisorsums drop constraint divisor_sum_pk;

This query takes a long time, which seems like a good sign. Perhaps it’s deleting a lot of data. Once that’s done, I removed the ON CONFLICT clause from the upsert command (it becomes just an insert command), and then rebuild and re-run the timing container. This shows that each insert takes only 3-4 seconds, which is much more reasonable.

Running sample 0
3.8325071334838867
Running sample 1
3.7897982597351074
Running sample 2
3.7978150844573975
Running sample 3
3.810023784637451
Running sample 4
3.8057897090911865

I am still curious about the possible fix by increasing the cache size, but my guess is that without the primary key change, increasing the cache size would just delay the application from slowing instead of fixing the problem permanently, so for now I will not touch it. Perhaps a reader with more experience with Postgres tuning would know better.

Updating the application

So with this new understanding, how should we update the application? Will anything go wrong if we delete the primary key on the RiemannDivisorSums table?

As suggested by our need to remove the ON CONFLICT clause, we might end up with duplicate rows. That is low risk, but scarier is if we stop the search mid-block and restart it, then if we’re really unlucky, we might get into a state where we skip a block and don’t notice, and that block contains the unique counterexample to the Riemann Hypothesis! We simply can’t let that happen. This is far too important. To be fair, this is a risk even before we remove the primary key. I’m just realizing it now.

We’ll rearchitect the system to mitigate that in a future post, and it will double as providing a means to scale horizontally. For now, this pull request removes the primary key constraint and does a bit of superficial cleanup. Now let’s re-run it!

Out of RAM again

This time, it ran for three hours before the divisorsearch container hit the 15 GiB RAM limit and crashed. Restarting the container and watching docker stats showed that it plain ran out of RAM. This is a much easier problem to solve because it involves only one container, and the virtual machine doesn’t slow to a crawl when it occurs, the container just stops running.

A quick python memory profile reveals the top 10 memory usages by line, the top being search_strategy.py:119 clocking in at about 2.2 GiB.

[ Top 10 ]
riemann/search_strategy.py:119: size=2245 MiB, count=9394253, average=251 B
venv/lib/python3.7/site-packages/llvmlite/ir/values.py:224: size=29.6 MiB, count=9224, average=3367 B
<string>:2: size=26.7 MiB, count=499846, average=56 B
riemann/superabundant.py:67: size=19.1 MiB, count=500003, average=40 B
riemann/superabundant.py:69: size=15.3 MiB, count=250000, average=64 B
riemann/superabundant.py:70: size=13.4 MiB, count=250000, average=56 B
venv/lib/python3.7/site-packages/llvmlite/ir/_utils.py:48: size=3491 KiB, count=6411, average=558 B
venv/lib/python3.7/site-packages/llvmlite/ir/values.py:215: size=2150 KiB, count=19267, average=114 B
riemann/search_strategy.py:109: size=2066 KiB, count=1, average=2066 KiB
venv/lib/python3.7/site-packages/llvmlite/ir/_utils.py:58: size=1135 KiB, count=2018, average=576 B

This line, not surprisingly, is the computation of the full list of partitions of $ n$. The length of this list grows superpolynomially in $ n$, which explains why it takes up all the RAM.

Since we only need to look at at most batch_size different partitions of $ n$ at a given time, we can probably fix this by adding a layer of indirection so that new sections of the partition list are generated on the fly and old sections are forgotten once the search strategy is done with them.

This pull request does that, and running the memory test again shows the 2.5 GiB line above reduced to 0.5 GiB. The pull request description also has some thoughts about the compute/memory tradeoff being made by this choice, and thoughts about how to improve the compute side.

So let’s run it again!! This time it runs for about 19 hours before crashing, as shown by the EC2 CPU usage metrics.

The application ran for about 19 hours before crashing.

According to the SearchMetadata table, we got up to part way through $ n=87$

divisor=# select * from searchmetadata order by start_time desc limit 3;
         start_time         |          end_time          |       search_state_type       | starting_search_state | ending_search_state 
----------------------------+----------------------------+-------------------------------+-----------------------+---------------------
 2021-01-27 00:00:11.59719  | 2021-01-27 00:01:14.709715 | SuperabundantEnumerationIndex | 87,15203332           | 87,15453332
 2021-01-26 23:59:01.285508 | 2021-01-27 00:00:11.596075 | SuperabundantEnumerationIndex | 87,14953332           | 87,15203332
 2021-01-26 23:57:59.809282 | 2021-01-26 23:59:01.284257 | SuperabundantEnumerationIndex | 87,14703332           | 87,14953332

Logging into the server and running df -h we can see the reason for the crash is that the disk is full. We filled up a 60 GiB SSD full of Riemann divisor sums. It’s quite an achievement. I’d like to thank my producers, the support staff, my mom, and the Academy.

But seriously, this is the best case scenario. Our limiting factor now is just how much we want to pay for disk space (and/or, any tricks we come up with to reduce disk space).

Analyzing the results, it seems we currently have 949 examples of numbers with witness values bigger than 1.767. Here are the top few:

                                                                                       n                                                                                        |                                                                                   divisor_sum                                                                                   |   witness_value    
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+--------------------
 533187564151227457465199401229454876347036513892234205802944360099435118364718466037392872608220305945979716166395732328054742493039981726997486787797703088097204529280000    | 5634790045188254963919691913741193557789227457256740288527114259589826494137632464425981545755572664137227875215269764405574488353138596297944567958732800000000000000000000    | 1.7689901658397056
 1392134632248635659178066321747923959130643639405311242305337754828812319490126543178571468950966856255821713228187290673772173611070448373361584302343872292681996160000      | 14673932409344413968540864358701024890076113169939427834706026717681839828483417876109326942071803812857364258373098344806183563419631761192563979059200000000000000000000      | 1.7688977455109272
 3673178449204843427910465228886342900080853929829317262019360830682882109472629401526573796704398037614305311947723722094385682351109362462695473093255599716839040000         | 38615611603537931496160169365002697079147666236682704828173754520215367969693204937129807742294220560150958574666048275805746219525346739980431523840000000000000000000         | 1.7688303488154073
 2784269264497271318356132643495847918261287278810622484610675509657624638980253086357142937901933712511643426456374581347544347222140896746723168604687744585363992320000      | 29355033324995298095346770663840105972086801871471400577978104254473441181064775868425839681379597759477726740614478613571725301516068423098949435392000000000000000000000      |  1.768798862584946
 9847663402693950208875241900499578820592101688550448423644399009873678577674609655567221975078815114247467324256631962719532660458738237165403413118647720420480000            | 103250298405181635016471041082894911976330658386852151946988648449773711148912312666122480594369573690243204745096385764186487217982210534707036160000000000000000000           | 1.7687597437473672

The best so far achieves 1.76899. Recall out last best number achieved a witness value of 1.7679, a modest improvement if we hope to get to 1.82 (or even the supposedly infinitely many examples with witness value bigger than 1.81!).

What’s next?

We’re not stopping until we disprove the Riemann hypothesis. So strap in, this is going to be a long series.

Since the limiting factor in our search is currently storage space, I’d like to spend some time coming up with a means to avoid storing the witness value and divisor sum for every single number in our search strategy, but still maintain the ability to claim our result (no counterexamples below N) while providing the means for a skeptical person to verify our claims as much as they desire without also storing the entire search space on disk.

Once we free ourselves from disk space constraints, the second limiting factor is that our search uses only a single CPU at a time. We should rearchitect the system so that we can scale horizontally, meaning we can increase the search rate by using more computers. We can do this by turning our system into a “worker” model, in which there is a continually growing queue of search blocks to process, and each worker machine asks for the next block to compute, computes it, and then stores the result in the database. There are some tricks required to ensure the workers don’t step on each other’s toes, but it’s a pretty standard computational model.

There’s also the possibility of analyzing our existing database to try to identify what properties of the top $ n$ values make their witness values so large. We could do this by re-computing the prime factorization of each of the numbers and squinting at it very hard. The benefit of doing this would ultimately be to design a new SearchStrategy that might find larger witness values faster than the superabundant enumeration. That approach also has the risk that, without a proof that the new search strategy is exhaustive, we might accidentally skip over the unique counterexample to the Riemann hypothesis!

And then, of course, there’s the business of a front-end and plotting. But I’m having a bit too much fun with the back end stuff to worry about that for now. Protest in the comments if you prefer I work on visualization instead.

Postscript: a false start

Here’s one thing I tried during debugging that turned out to be a dead end: the linux perf tool. It is way more detailed than I can understand, but it provides a means to let me know if the program is stuck in the OS kernel or whether it’s the applications that are slow. I ran the perf tool when the deployed application was in the “good performance” regime (early in its run). I saw something like this:

Samples: 59K of event 'cpu-clock:pppH', Event count (approx.): 119984000000
Overhead  Command          Shared Object                                Symbol
  49.13%  swapper          [kernel.kallsyms]                            [k] native_safe_halt
   8.04%  python3          libpython3.7m.so.1.0                         [.] _PyEval_EvalFrameDefault
   1.35%  python3          libpython3.7m.so.1.0                         [.] _PyDict_LoadGlobal
   0.86%  python3          libc-2.28.so                                 [.] realloc
   0.86%  python3          libpython3.7m.so.1.0                         [.] 0x0000000000139736
   0.77%  python3          libpython3.7m.so.1.0                         [.] PyTuple_New
   0.74%  python3          libpython3.7m.so.1.0                         [.] PyType_IsSubtype

It says half the time is spent by something called “swapper” doing something called native_safe_halt, and this in kernel mode ([k]), i.e., run by the OS. The rest of the list is dominated by python3 and postgres doing stuff like _PyDict_LoadGlobal which I assume is useful Python work. When I look up native_safe_halt (finding an explanation is surprisingly hard), I learn that this indicates the system is doing nothing. So 49% of the time the CPU is idle. This fits with good behavior in our case, because each docker container gets one of the two CPUs on the host, and the postgres container is most often doing nothing while waiting for the search container to send it data. This also matches the CPU utilization on the EC2 dashboard. So everything appears in order.

I ran perf again after the application started slowing down, and I saw that native_safe_halt is at 95%. This tells me nothing new, sadly. I also tried running it during the timing test and saw about 40% usage of some symbols like __softirqentry_text_start and __lock_text_start. Google failed to help me understand what that was, so it was a dead end.

Searching for RH Counterexamples — Deploying with Docker

We’re ironically searching for counterexamples to the Riemann Hypothesis.

  1. Setting up Pytest
  2. Adding a Database
  3. Search Strategies
  4. Unbounded Integers

In this article we’ll deploy the application on a server, so that it can search for RH counterexamples even when I close my laptop.

Servers and containers

When deploying applications to servers, reproducibility is crucial. You don’t want your application to depend on the details of the computer it’s running on. This is a higher-level version of the same principle behind Python virtual environments, but it applies to collections of programs, possibly written in different languages and running on different computers. In our case, we have a postgres database, the pgmp extension, the populate_database program, and plans for a web server.

The principle of an application not depending on the system it’s running on is called hermeticity (the noun form of hermetic, meaning air-tight). Hermeticity is good for the following reasons. When a server crashes, you don’t have to remember what you did to set it up. Instead you run a build/install that works on any machine. Newcomers also don’t have to guess what unknown aspects of a running server are sensitive. Another benefit is that you can test it on your local machine identically to how it will run in production. It also allows you to easily migrate from one cloud provider to another, which allows you to defer expensive commitments until you have more information about your application’s needs. Finally, if you have multiple applications running on the same server, you don’t want to have their needs conflict with each other, which can happen easily if two applications have dependencies that transitively depend on different versions of the same software. This is called “dependency hell.” In all of these, you protect yourself from becoming dependent on arbitrary choices you made before you knew better.

One industry-strength approach to hermeticity is to use containers. A container is a virtual machine devoted to running a single program, with explicitly-defined exposure to the outside world. We will set up three containers: one to run the database, one for the search application, and (later) one for a web server. We’ll start by deploying them all on the same machine, but could also deploy them to different machines. Docker is a popular containerization system. Before going on, I should stress that Docker, while I like it, is not sacred by any means. In a decade Docker may disappear, but the principle of hermeticity and the need for reproducible deployments will persist.

Docker allows you to describe your container by first starting from an existing (trusted) container, such as one that has an operating system and postgres already installed, and extend it for your application. This includes installing dependencies, fetching the application code from git, copying files into the container from the host system, exposing the container’s network ports, and launching the application. You save the commands that accomplish that in a Dockerfile with some special syntax. To deploy it, you copy the Dockerfile to the server (say, via git) and run docker commands to launch the container. You only have to get the Dockerfile right once, you can test it locally, and then it will work on any server just the same. The only caveat I’ve seen here is that if you migrate to a server with a different processor architecture, the install script (in our case, pip install numba) may fail to find a pre-compiled binary for the target architecture, and it may fall back to compiling from source, which can add additional requirements or force you to change which OS your container is derived from.

This reduces our “set up a new server” script to just a few operations: (1) install docker (2) fetch the repository (3) launch the docker containers from their respective Dockerfiles. In my experience, writing a Dockerfile is no small task, but figuring out how to install stuff is awful in all cases, and doing it for Docker gives you an artifact tracing the steps, and a reasonable expectation of not having to do it again.

Thankfully, you dear readers can skip my head-banging and see the Dockerfiles after I figured it out.

The Postgres Dockerfile

This commit adds a Dockerfile for the database, and makes some small changes to the project to allow it to run. It has only 15 lines, but it took me a few hours to figure out. The process was similar to installing confusing software on your own machine: try to install, see some error like "missing postgres.h“, go hunt around on the internet to figure out what you have to install to get past the error, and repeat.

Let’s go through each line of the Dockerfile.

FROM postgres:12

The first line defines the container image that this container starts from, which is officially maintained by the Postgres team. Looking at their Dockerfile, it starts from debian:buster-slim, which is a Debian Linux instance that is “slimmed” down to be suitable for docker containers, meaning it has few packages pre-installed. Most importantly, “Debian” tells us what package manager to use (apt-get) in our Dockerfile.

It’s also worth noting at this point that, when docker builds the container, each command in a docker file results in a new image. An image is a serialized copy of all the data in a docker container, so that it can be started or extended easily. And if you change a line halfway through your Dockerfile, docker only has to rebuild images from that step onward. You can publish images on the web, and other docker users can use them as a base. This is like forking a project on Github, and is exactly what happens when Docker executes FROM postgres:12.

ENV POSTGRES_USER docker
ENV POSTGRES_PASSWORD docker
ENV POSTGRES_DB divisor

These lines declare configuration for the database that the base postgres image will create when the container is started. The variable names are described in the “Environment Variables” section of the Postgres image’s documentation. The ENV command tells docker to instantiate environment variables (like the PATH variable in a terminal shell), that running programs can access. I’m insecurely showing the password and username here because the server the docker containers will run on won’t yet expose anything to the outside world. Later in this post you will see how to pass an environment variable from the docker command line when the container is run, and you would use something close to that to set configuration secrets securely.

RUN apt-get update \
        && apt-get install -y pgxnclient build-essential libgmp3-dev postgresql-server-dev-12 libmpc-dev

The RUN command allows you to run any shell command you’d like, in this case a command to update apt and install the dependencies needed to build the pgmp extension. This includes gcc and make via build-essential, and the gmp-specific libraries.

RUN apt-get install -y python3.7 python3-setuptools python3-pip python-pip python3.7-dev \
        && pip3 install wheel \
        && pip install six

Next we do something a bit strange. We install python3.7 and pip (because we will need to pip3 install our project’s requirements.txt), but also python2’s pip. Here’s what’s going on. The pgmp postgres extension needs to be built from source, and it has a dependency on python2.7 and the python2-six library. So the first RUN line here installs all the python-related tools we need.

RUN pgxn install pgmp

Then we install the pgmp extension.

COPY . /divisor
WORKDIR "/divisor"

These next two lines copy the current directory on the host machine to the container’s file system, and sets the working directory for all future commands to that directory. Note that whenever the contents of our project change, docker needs to rebuild the image from this step because any subsequent steps like pip install -r requirements.txt might have a different outcome.

RUN python3 -m pip install --upgrade pip
RUN pip3 install -r requirements.txt

Next we upgrade pip (which is oddly required for the numba dependency, though I can’t re-find the Github issue where I discovered this) and install the python dependencies for the project. The only reason this is required is because we included the database schema setup in the python script riemann/postgres_batabase.py. So this makes the container a bit more complicated than absolutely necessary. It can be improved later if need be.

ENV PGUSER=docker
ENV PGPASSWORD=docker
ENV PGDATABASE=divisor

These next lines are environment variables used by the psycopg2 python library to infer how to connect to postgres if no database spec is passed in. It would be nice if this was shared with the postgres environment variables, but duplicating it is no problem.

COPY setup_schema.sh /docker-entrypoint-initdb.d/

The last line copies a script to a special directory specified by the base postgres Dockerfile. The base dockerfile specifies that any scripts in this directory will be run when the container is started up. In our case, we just call the (idempotent) command to create the database. In a normal container we might specify a command to run when the container is started (our search container, defined next, will do this), but the postgres base image handles this for us by starting the postgres database and exposing the right ports.

Finally we can build and run the container

docker build -t divisordb -f divisordb.Dockerfile .
#  ... lots of output ...

docker run -d -p 5432:5432 --name divisordb divisordb:latest

After the docker build command—which will take a while—you will be able to see the built images by running docker images, and the final image will have a special tag divisordb. The run command additionally tells docker to run the container as a daemon (a.k.a. in the background) with -d and to -p to publish port 5432 on the host machine and map it to 5432 on the container. This allows external programs and programs on other computers to talk to the container by hitting 0.0.0.0:5432. It also allows other containers to talk to this container, but as we’ll see shortly that requires a bit more work, because inside a container 0.0.0.0 means the container, not the host machine.

Finally, one can run the following code on the host machine to check that the database is accepting connections.

pg_isready --host 0.0.0.0 --username docker --port 5432 --dbname divisor

If you want to get into the database to run queries, you can run psql with the same flags as pg_isready, or manually enter the container with docker exec -it divisordb bash and run psql from there.

psql --host 0.0.0.0 --username docker --port 5432 --dbname divisor
Password for user docker: docker
divisor=# \d
              List of relations
 Schema |        Name        | Type  | Owner  
--------+--------------------+-------+--------
 public | riemanndivisorsums | table | docker
 public | searchmetadata     | table | docker
(2 rows)

Look at that. You wanted to disprove the Riemann Hypothesis, and here you are running docker containers.

The Search Container

Next we’ll add a container for the main search application. Before we do this, it will help to make the main entry point to the program a little bit simpler. This commit modifies populate_database.py‘s main routine to use argparse and some sensible defaults. Now we can run the application with just python -m riemann.populate_database.

Then the Dockerfile for the search part is defined in this commit. I’ve copied it below. It’s much simpler than the database, but somehow took just as long for me to build as the database Dockerfile, because I originally chose a base image called “alpine” that is (unknown to me at the time) really bad for Python if your dependencies have compiled C code, like numba does.

FROM python:3.7-slim-buster

RUN apt-get update \
        && apt-get install -y build-essential libgmp3-dev libmpc-dev

COPY . /divisor
WORKDIR "/divisor"

RUN pip3 install -r requirements.txt

ENV PGUSER=docker
ENV PGPASSWORD=docker
ENV PGDATABASE=divisor

ENTRYPOINT ["python3", "-m", "riemann.populate_database"]

The base image is again Debian, with Python3.7 pre-installed.

Then we can build it and (almost) run it

docker build -t divisorsearch -f divisorsearch.Dockerfile .
docker run -d --name divisorsearch --env PGHOST="$PGHOST" divisorsearch:latest 

What’s missing here is the PGHOST environment variable, which psycopg2 uses to find the database. The problem is, inside the container “localhost” and 0.0.0.0 are interpreted by the operating system to mean the container itself, not the host machine. To get around this problem, docker maintains IP addresses for each docker container, and uses those to route network requests between containers. The docker inspect command exposes information about this. Here’s a sample of the output

$ docker inspect divisordb
[
    {
        "Id": "f731a78bde50be3de1d77ae1cff6d23c7fe21d4dbe6a82b31332c3ef3f6bbbb4",
        "Path": "docker-entrypoint.sh",
        "Args": [
            "postgres"
        ],
        "State": {
            "Status": "running",
            "Running": true,
            "Paused": false,
            ...
        },
        ...
        "NetworkSettings": {
            ...
            "Ports": {
                "5432/tcp": [
                    {
                        "HostIp": "0.0.0.0",
                        "HostPort": "5432"
                    }
                ]
            },
            ...
            "IPAddress": "172.17.0.2",
            ...
        }
    }
]

The part that matters for us is the ip address, and the following extracts it to the environment variable PGHOST.

export PGHOST=$(docker inspect -f "{{ .NetworkSettings.IPAddress }}" divisordb)

Once the two containers are running—see docker ps for the running containers, docker ps -a to see any containers that were killed due to an error, and docker logs to see the container’s logged output—you can check the database to see it’s being populated.

divisor=# select * from SearchMetadata order by start_time desc limit 10;
         start_time         |          end_time          |       search_state_type       | starting_search_state | ending_search_state 
----------------------------+----------------------------+-------------------------------+-----------------------+---------------------
 2020-12-27 03:10:01.256996 | 2020-12-27 03:10:03.594773 | SuperabundantEnumerationIndex | 29,1541               | 31,1372
 2020-12-27 03:09:59.160157 | 2020-12-27 03:10:01.253247 | SuperabundantEnumerationIndex | 26,705                | 29,1541
 2020-12-27 03:09:52.035991 | 2020-12-27 03:09:59.156464 | SuperabundantEnumerationIndex | 1,0                   | 26,705

Ship it!

I have an AWS account, so let’s use Amazon for this. Rather than try the newfangled beanstalks or lightsails or whatever AWS-specific frameworks they’re trying to sell, for now I’ll provision a single Ubuntu EC2 server and run everything on it. I picked a t2.micro for testing (which is free). There’s a bit of setup to configure and launch the server—such as picking the server image, downloading an ssh key, and finding the IP address. I’ll skip those details since they are not (yet) relevant to the engineering process.

Once I have my server, I can ssh in, install docker, git clone the project, and run the deploy script.

# install docker, see get.docker.com
curl -fsSL https://get.docker.com -o get-docker.sh
sudo sh get-docker.sh
sudo usermod -aG docker ubuntu

# log out and log back in

git clone https://github.com/j2kun/riemann-divisor-sum && cd riemann-divisor-sum
bash deploy.sh

And it works!

Sadly, within an hour the divisorsearch container crashes because the instance runs out of RAM and CPU. Upgrading to a t2.medium (4 GiB RAM), it goes for about 2 hours before exhausting RAM. We could profile it and find the memory hotspots, but instead let’s apply a theorem due to billionaire mathematician Jim Simons: throw money at the problem. Upgrading to a r5.large (16 GiB RAM), and it runs comfortably all day.

Four days later, logging back into the VM and and I notice things are sluggish, even though the docker instance isn’t exhausting the total available RAM or CPU. docker stats also shows low CPU usage on divisorsearch. The database shows that it has only got up to 75 divisors, which is just as far as it got when I ran it (not in Docker) on my laptop for a few hours in the last article.

Something is amiss, and we’ll explore what happened next time.

Notes

A few notes on improvements that didn’t make it into this article.

In our deployment, we rebuild the docker containers each time, even when nothing changes. What one could do instead is store the built images in what’s called a container registry, and pull them instead of re-building them on every deploy. This would only save us a few minutes of waiting, but is generally good practice.

We could also use docker compose and a corresponding configuration file to coordinate launching a collection of containers that have dependencies on each other. For our case, the divisorsearch container depended on the divisordb container, and our startup script added a sleep 5 to ensure the latter was running before starting the former. docker compose would automatically handle that, as well as the configuration for naming, resource limits, etc. With only two containers it’s not that much more convenient, given that docker compose is an extra layer of indirection to learn that hides the lower-level commands.

In this article we deployed a single database container and a single “search” container. Most of the time the database container is sitting idle while the search container does its magic. If we wanted to scale up, an obvious way would be to have multiple workers. But it would require some decent feature work. A sketch: reorganize the SearchMetadata table so that it contains a state attribute, like “not started”, “started”, or “finished,” then add functionality so that a worker (atomically) asks for the oldest “not started” block and updates the row’s state to “started.” When a worker finishes a block, it updates the database and marks the block as finished. If no “not started” blocks are found, the worker proceeds to create some number of new “not started” blocks. There are details to be ironed out around race conditions between multiple workers, but Postgres is designed to make such things straightforward.

Finally, we could reduce the database size by keeping track of a summary of a search block instead of storing all the data in the block. For example, we could record the n and witness_value corresponding to the largest witness_value in a block, instead of saving every n and every witness_value. In order for this to be usable—i.e., for us to be able to say “we checked all possible $ n < M$ and found no counterexamples”—we’d want to provide a means to verify the approach, say, by randomly verifying the claimed maxima of a random subset of blocks. However, doing this also precludes the ability to analyze patterns that look at all the data. So it’s a tradeoff.