Searching for RH Counterexamples — Unbounded Integers

We’re ironically searching for counterexamples to the Riemann Hypothesis.

  1. Setting up Pytest
  2. Adding a Database
  3. Search strategies

In the last article, we improved our naive search from “try all positive integers” to enumerate a subset of integers (superabundant numbers), which RH counterexamples are guaranteed to be among. These numbers grow large, fast, and we quickly reached the limit of what 64 bit integers can store.

Unbounded integer arithmetic is possible on computers, but it requires a special software implementation. In brief, you represent numbers in base-N for some large N (say, 2^{32}), and then use a 32-bit integer for each digit. Arithmetic on such quantities emulates a ripple-carry adder, which naturally requires linear time in the number of digits of each operand. Artem Golubin has a nice explanation of how Python does it internally.

So Python can handle unbounded integer arithmetic, but neither numba nor our database engine do. Those both crash when exceeding 64-bit integers This is a problem because we won’t be able to store the results of our search without being able to put it in a database. This leaves us with a classic software engineering problem. What’s the path forward?

Exploring Alternatives

The impulse answer is to do as little as possible to make the damn thing work. In a situation where the software you’re writing is a prototype, and you expect it to be rewritten from scratch in the future, this is an acceptable attitude. That said, experienced engineers would caution you that, all too often, such “prototypes” are copy-pasted to become janky mission-critical systems for years.

In pretending this is the “real thing,” let’s do what real engineers would do and scope out some alternatives before diving in. The two aspects are our database and the use of numba for performance.

Let’s start with the database. A quick and dirty option: store all numbers as text strings in the database. There’s no limit on the size of the number in that case. The benefit: we don’t need to use a different database engine, and most of our code stays the same. The cost: we can’t use numeric operations in database queries, which would make further analysis and fetching awkward. In particular, we can’t even apply sorting operations, since text strings are sorted lexicographically (e.g., 100, 25) while numbers are sorted by magnitude (25, 100). Note, we applied this “numbers as text” idea to the problem of serializing the search state, and it was hacky there, too.

A second option is to find a database engine with direct support for unbounded-integer arithmetic. The benefit: fast database queries and the confidence that it will support future use cases well. The cost: if our existing sqlite-based interface doesn’t work with the new database engine, we’d have to write another implementation of our database interface.

For numba, we have at least three options. First, fall back to native python arithmetic, which is slow. Second, implement arbitrary-precision arithmetic in Python in a way that numba can compile it. Third, find (or implement) a C-implementation of arbitrary precision integer arithmetic, provide Python bindings, and optionally see if it can work with (or replace) numba. As I write this I haven’t yet tried any of these options. My intuition tells me the best way to go would be to find “proper” support for arbitrary precision integers.

For the database, I recall that the Postgres database engine supports various extensions, for example this extension that adds support for geographic objects. Postgres’s extension framework demonstrates an important software engineering principle that many of the best projects follow: “closed for modification, open for extension.” That is, Postgres is designed so that others can contribute new features to Postgres without requiring the Postgres team to do anything special—specifically, they don’t have to change Postgres to accommodate it. The name for this sometimes goes by extensions, or plug-ins, hooks, or (at a lower level) callbacks. Github Actions is a good example of this.

Geographic objects are almost certainly more complicated than arbitrary precision integers, so chances are good a Postgres extension exists for the latter. Incorporating it would involve migrating to Postgres, finding and installing that extension, and then converting the C library representation above to whatever representation Postgres accepts in a query.

A good route will also ensure that we need not change our tests too much, since all we’re doing here is modifying implementations. We’ll see how well that holds up.

gmp and pgmp

After some digging, I found GMP (GNU Multiple Precision), a C library written by Torbjörn Granlund. It has a Python bindings library called gmpy that allows Python to use an “mpz” (“Multiple Precision \mathbb{Z}“) type as a drop-in replacement for Python integers. And I found a PostgreSQL extension called pgmp. The standard Python library for Postgres is psycopg2, which was written by the same person who wrote pgmp, Daniele Varrazzo.

To start, I ran a timing test of gmpy, which proves to be as fast as numba. This pull request has the details.

It took a small bit of kicking to get pgmp to install, but then I made a test database that uses the new column type mpz and stores the value 2^{513}.

postgres=# create database pgmp_test;
CREATE DATABASE
postgres=# \connect pgmp_test;
You are now connected to database "pgmp_test" as user "jeremy".
pgmp_test=# CREATE EXTENSION pgmp;
CREATE EXTENSION
pgmp_test=# create table test_table (id int4, value mpz);
CREATE TABLE
pgmp_test=# insert into test_table
pgmp_test-# values (1, 2::mpz ^ 513);
INSERT 0 1
pgmp_test=# select * from test_table;
 id |                                                                            value                                                                            
----+-------------------------------------------------------------------------------------------------------------------------------------------------------------
  1 | 26815615859885194199148049996411692254958731641184786755447122887443528060147093953603748596333806855380063716372972101707507765623893139892867298012168192
(1 row)

Now I’m pretty confident this approach will work.

This pull request includes the necessary commits to add a postgres implementation of our database interface, add tests (which is a minor nuisance).

Then this pull request converts the main divisor computation functions to use gmpy, and this final commit converts the main program to use the postgres database.

This exposed one bug, that I wasn’t converting the new mpz types properly in the postgres sql query. This commit fixes it, and this commit adds a regression test to catch that specific error going forward.

Results and next steps

With all that work, I ran the counterexample search for a few hours.

When I stopped it, it had checked all possibly-superabundant numbers whose prime factorizations have at most 75 prime factors, including multiplicity. Since all possible counterexamples to the RH must be superabundant, and all superabundant numbers have the aforementioned special prime factorization, we can say it more simply. I ruled out all positive integers whose prime factorization has at most 75 factors.

The top 10 are:

divisor=# select n, witness_value 
from RiemannDivisorSums 
where witness_value > 1.7 and n > 5040 
order by witness_value desc 
limit 10;
                                                                         n                                                                          |   witness_value    
----------------------------------------------------------------------------------------------------------------------------------------------------+--------------------
 7837096340441581730115353880089927210115664131849557062713735873563599357074419807246597145310377220030504976899588686851652680862494751024960000  | 1.7679071291526642
 49445402778811241199465955079431717413978953513246416799455746836363402883750282695562127099750014006501608687063651021146073696293342277760000    |  1.767864530684858
 24722701389405620599732977539715858706989476756623208399727873418181701441875141347781063549875007003250804343531825510573036848146671138880000    |  1.767645098171234
 157972532839652527793820942745788234549453525601426251755449670403716942120607931934703281468849885004797471843653837128262216282087355520000      | 1.7676163327497005
 2149800120817880052150693699105726844086041457097670295628510732015800125380447073720092482597826695934852551611463087875916247664927925120000     |  1.767592584103948
 340743319149633988265884951308257704787637570949980741857118951024504319872800861184634658491755531305674129430416899428332725254891076131520000   |  1.767582883432923
 23511289021324745190346061640269781630346992395548671188141207620690798071223259421739791435931131660091514930698766060554958042587484253074880000 | 1.7674462177172812
 507950266365442211555694349664913937458049921547994378634886400011951582381375986928306371282475514484879330686989829994412271003496320000         | 1.7674395010995763
 78986266419826263896910471372894117274726762800713125877724835201858471060303965967351640734424942502398735921826918564131108141043677760000       | 1.7674104158678667
 6868370993028370773644388815034271067367544591366358771976072626248562700895997040639273107341299348034672688854514657750531142699450240000        | 1.7674059308384011

This is new. We’ve found quite a few numbers that have a better witness value than n = 10080 which achieves ~1.7558. The best is

78370963404415817301153538800899272101156641318495
57062713735873563599357074419807246597145310377220
030504976899588686851652680862494751024960000

which achieves ~1.7679. Recall the 1.781 threshold needed to be a RH counterexample. We’re about 50% of the way toward disproving RH. How much more work could it take?

But seriously, what’s next with this project? For one, even though we have some monstrous numbers and their divisor sums and witness values, it’s hard to see the patterns in them through a SQL queries. It would be nicer to make some pretty plots.

I could also take a step back and see what could be improved from a software engineering standpoint. For one, not all parts of the application are tested, and tests aren’t automatically run when I make changes. This enabled the bug above where I didn’t properly convert mpz types before passing them to SQL upsert statements. For two, while I have been using type annotations in some places, they aren’t checked, and the switch to mpz has almost certainly made many of the type hints incorrect. I could fix that and set up a test that type checks.

Finally, in the interest of completeness, I could set up a front end that displays some summary of the data, and then deploy the whole application so that it has a continuously-running background search, along with a website that shows how far along the search is. Based on how long the SQL statement to find the top 10 witness values took, this would also likely require some caching, which fits snugly in the class of typical software engineering problems.

Let me know what you’re interested in.

Searching for RH Counterexamples — Search Strategies

We’re glibly searching for counterexamples to the Riemann Hypothesis, to trick you into learning about software engineering principles. In the first two articles we configured a testing framework and showed how to hide implementation choices behind an interface. Next, we’ll improve the algorithm’s core routine. As before, I’ll link to specific git commits in the final code repository to show how the project evolves.

Superabundant numbers

A superabundant number n is one which has “maximal relative divisor sums” in the following sense: for all m < n,

\displaystyle \frac{\sigma(m)}{m} < \frac{\sigma(n)}{n}

where \sigma(n) is the sum of the divisors of n.

Erdős and Alaoglu proved in 1944 (“On highly composite and similar numbers“) that superabundant numbers have a specific prime decomposition, in which all initial primes occur with non-increasing exponents

\displaystyle n = \prod_{i=1}^k (p_i)^{a_i},

where p_i is the i-th prime, and a_1 \geq a_2 \geq \dots \geq a_k \geq 1. With two exceptions (n=4, 36), a_k  = 1.

Here’s a rough justification for why superabundant numbers should have a decomposition like this. If you want a number with many divisors (compared to the size of the number), you want to pack as many combinations of small primes into the decomposition of your number as possible. Using all 2’s leads to not enough combinations—only m+1 divisors for 2^m—but using 2′ and 3’s you get (r+1)(s+1) for 2^r3^s. Using more 3’s trades off a larger number n for the benefit of a larger \sigma(n) (up to r=s). The balance between getting more distinct factor combinations and a larger n favors packing the primes in there.

Though numbers of this form are not necessarily superabundant, this gives us an enumeration strategy better than trying all numbers. Enumerate over tuples corresponding to the exponents of the prime decomposition (non-increasing lists of integers), and save those primes to make it easier to compute the divisor sum.

Non-increasing lists of integers can be enumerated in the order of their sum, and for each sum N, the set of non-increasing lists of integers summing to N is called the partitions of N. There is a simple algorithm to compute them, implemented in this commit. Note this does not enumerate them in order of the magnitude of the number \prod_{i=1}^k (p_i)^{a_i}.

The implementation for the prime-factorization-based divisor sum computation is in this commit. In addition, to show some alternative methods of testing, we used the hypothesis library to autogenerate tests. It chooses a random (limited size) prime factorization, and compares the prime-factorization-based algorithm to the naive algorithm. There’s a bit of setup code involved, but as a result we get dozens of tests and more confidence it’s right.

Search Strategies

We now have two search strategies over the space of natural numbers, though one is obviously better. We may come up with a third, so it makes sense to separate the search strategy from the main application by an interface. Generally, if you have a hard-coded implementation, and you realize that you need to change it in a significant way, that’s a good opportunity to extract it and hide it behind an interface.

A good interface choice is a bit tricky here, however. In the original implementation, we could say, “process the batch of numbers (search for counterexamples) between 1 and 2 million.” When that batch is saved to the database, we would start on the next batch, and all the batches would be the same size, so (ignoring that computing \sigma(n) the old way takes longer as n grows) each batch required roughly the same time to run.

The new search strategy doesn’t have a sensible way to do this. You can’t say “start processing from K” because we don’t know how to easily get from K to the parameter of the enumeration corresponding to K (if one exists). This is partly because our enumeration isn’t monotonic increasing (2^1 3^1 5^1 = 30 comes before 2^4 = 16). And partly because even if we did have a scheme, it would almost certainly require us to compute a prime factorization, which is slow. It would be better if we could save the data from the latest step of the enumeration, and load it up when starting the next batch of the search.

This scheme suggests a nicely generic interface for stopping and restarting a search from a particular spot. The definition of a “spot,” and how to start searching from that spot, are what’s hidden by the interface. Here’s a first pass.

SearchState = TypeVar('SearchState')

class SearchStrategy(ABC):
    @abstractmethod
    def starting_from(self, search_state: SearchState) -> SearchStrategy:
        '''Reset the search strategy to search from a given state.'''
        pass

    @abstractmethod
    def search_state(self) -> SearchState:
        '''Get an object describing the current state of the enumeration.'''
        pass

    @abstractmethod
    def next_batch(self, batch_size: int) -> List[RiemannDivisorSum]:
        '''Process the next batch of Riemann Divisor Sums'''
        pass

Note that SearchState is defined as a generic type variable because we cannot say anything about its structure yet. The implementation class is responsible for defining what constitutes a search state, and getting the search strategy back to the correct step of the enumeration given the search state as input. Later I realized we do need some structure on the SearchState—the ability to serialize it for storage in the database—so we elevated it to an interface later.

Also note that we are making SearchStrategy own the job of computing the Riemann divisor sums. This is because the enumeration details and the algorithm to compute the divisor sums are now coupled. For the exhaustive search strategy it was “integers n, naively loop over smaller divisors.” In the new strategy it’s “prime factorizations, prime-factorization-based divisor sum.” We could decouple this, but there is little reason to now because the implementations are still in 1-1 correspondence.

This commit implements the old search strategy in terms of this interface, and this commit implements the new search strategy. In the latter, I use pytest.parameterize to test against the interface and parameterize over the implementations.

The last needed bit is the ability to store and recover the search state in between executions of the main program. This requires a second database table. The minimal thing we could do is just store and update a single row for each search strategy, providing the search state as of the last time the program was run and stopped. This would do, but in my opinion an append-only log is a better design for such a table. That is, each batch computed will have a record containing the timestamp the batch started and finished, along with the starting and ending search state. We can use the largest timestamp for a given search strategy to pick up where we left off across program runs.

One can imagine this being the basis for an application like folding@home or the BOINC family of projects, where a database stores chunks of a larger computation (ranges of a search space), clients can request chunks to complete, and they are assembled into a complete database. In this case we might want to associate the chunk metadata with the computed results (say, via a foreign key). That would require a bit of work from what we have now, but note that the interfaces would remain reusable for this. For now, we will just incorporate the basic table approach. It is completed in this pull request, and tying it into the main search routine is done in this commit.

However, when running it with the superabundant search strategy, we immediately run into a problem. Superabundant numbers grow too fast, and within a few small batches of size 100 we quickly exceed the 64 bits available to numba and sqlite to store the relevant data.

>>> fac = partition_to_prime_factorization(partitions_of_n(16)[167])
>>> fac2 = [p**d for (p, d) in fac]
>>> fac2
[16, 81, 625, 2401, 11, 13, 17, 19, 23, 29, 31, 37]
>>> math.log2(reduce(lambda x,y: x*y, fac2))
65.89743638933722

Running populate_database.py results in the error

$ python -m riemann.populate_database db.sqlite3 SuperabundantSearchStrategy 100
Searching with strategy SuperabundantSearchStrategy
Starting from search state SuperabundantEnumerationIndex(level=1, index_in_level=0)
Computed [1,0, 10,4] in 0:00:03.618798
Computed [10,4, 12,6] in 0:00:00.031451
Computed [12,6, 13,29] in 0:00:00.031518
Computed [13,29, 14,28] in 0:00:00.041464
Computed [14,28, 14,128] in 0:00:00.041674
Computed [14,128, 15,93] in 0:00:00.034419
...
OverflowError: Python int too large to convert to SQLite INTEGER

We’ll see what we can do about this in a future article, but meanwhile we do get some additional divisor sums for these large numbers, and 10080 is still the best.

sqlite> select n, witness_value 
from RiemannDivisorSums 
where witness_value > 1.7 and n > 5040 
order by witness_value desc 
limit 10;

10080|1.7558143389253
55440|1.75124651488749
27720|1.74253672381383
7560|1.73991651920276
15120|1.73855867428903
160626866400|1.73744669257158
321253732800|1.73706925385011
110880|1.73484901030336
6983776800|1.73417642212953
720720|1.73306535623807